Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [2]
Если бы Кант поднял голову…
В своей книге «Критика способности суждения» Иммануил Кант задался вопросом: является ли математика частью природы или же математику в натуральную философию привносят сами математики? Он писал о господствующих силах природы так:
«Можно смело сказать: для людей было бы нелепо даже только думать об этом или надеяться, что когда-нибудь появится новый Ньютон, который сумеет сделать понятным возникновение хотя бы травинки, исходя лишь из законов природы, не подчиненных никакой цели. Напротив, такую проницательность следует безусловно отрицать у людей»[1].
Портрет Иммануила Канта.
«С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки».
Это амбициозное утверждение сегодня неактуально — если вы позволите нам такое сравнение, то уже пришло время этого второго Ньютона, который сделал понятным возникновение травинок. Мы говорим об английском математике Майкле Барнсли, специалисте по одному из интереснейших аспектов теории хаоса — фракталам. Фрактальная геометрия — неразлучная спутница теории хаоса, в чем вы еще не раз убедитесь, читая эту книгу.
Барнсли обнаружил, что при простой «игре в хаос», словно по волшебству, могут появляться листья папоротника и других растений. Игра в хаос заключается всего лишь в постепенном нанесении на лист бумаги последовательности точек, которая в пределе образует знакомую картину. Подведем итог: на основе случайного закона (Кант сказал бы: закона, не подчиняющегося намерению) при помощи компьютера мы способны породить лист растения. Для этого достаточно выбрать фиксированную точку (расположенную не в центре экрана) и начать подбрасывать монету.
Когда выпадет решка, отметим новую точку на расстоянии в 6 единиц на северо-запад от предыдущей. Когда выпадет орел, новую точку сдвинем на 25 % к центру относительно предыдущей. Очевидно, что это построение может повторяться произвольное число раз и изначально расположение точек будет казаться случайным.
Однако после нескольких тысяч бросков на экране непостижимым образом постепенно начнет проявляться лист папоротника. Хаос словно бы порождает порядок в виде фрактального множества — папоротника Барнсли.
Мы никогда не узнаем, что сказал бы великий кёнигсбергский философ, если бы смог охватить взглядом удивительное множество природных систем, строго детерминированных, но при этом обладающих хаотическим поведением со всеми вытекающими последствиями, то есть поведением случайным, или стохастическим (по-гречески stochastikos означает «умеющий угадывать»). Многие движения, кажущиеся беспорядочными, в действительности описываются строгими правилами, в которых нет места случайности. Таким образом, хаос и фракталы — это новый инструмент познания Вселенной.
«Спонтанное» появление папоротника Барнсли.
* * *
ОТРЫВОК ИЗ РОМАНА «ВЕК ПРОСВЕЩЕНИЯ» АЛЕХО КАРПЕНТЬЕРА
Наблюдая за улиткой, Эстебан думал о том, что на протяжении тысячелетий перед взором первобытных народов, живших рыбною ловлей, постоянно находилась спираль, но они еще не способны были не только постичь ее форму, но даже осознать ее присутствие. Он созерцал похожего на шар морского ежа, спиралевидную раковину моллюска, желобки на раковине святого Иакова и поражался богатству форм, открытых человечеству, которое, увы, не способно осмыслить то, что представало его глазам. «Верно, и ныне многое вокруг меня приняло четкие и определенные формы, но я не могу постичь их смысл!» — думал Эстебан. Какой знак, какая мысль, какое предупреждение таятся в завитках цикория, в немом языке мхов, в строгой форме плода миртового дерева? Созерцать улитку. Одну улитку… Те Deum…[2]
* * *
ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»
(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА
- Тираннозавр не намерен подчиняться правилам и распорядку, он — суть хаоса.
- Я не понимаю, что такое хаос. Что это значит?
- Это непредсказуемость в сложных системах. Проще говоря — эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.
Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?
- Скажем, к большому.
- Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?
- Не знаю. Туда же?
- Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.
- Как это называется?
- Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.
* * *
Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.