Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [2]
Если бы Кант поднял голову…
В своей книге «Критика способности суждения» Иммануил Кант задался вопросом: является ли математика частью природы или же математику в натуральную философию привносят сами математики? Он писал о господствующих силах природы так:
«Можно смело сказать: для людей было бы нелепо даже только думать об этом или надеяться, что когда-нибудь появится новый Ньютон, который сумеет сделать понятным возникновение хотя бы травинки, исходя лишь из законов природы, не подчиненных никакой цели. Напротив, такую проницательность следует безусловно отрицать у людей»[1].
Портрет Иммануила Канта.
«С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки».
Это амбициозное утверждение сегодня неактуально — если вы позволите нам такое сравнение, то уже пришло время этого второго Ньютона, который сделал понятным возникновение травинок. Мы говорим об английском математике Майкле Барнсли, специалисте по одному из интереснейших аспектов теории хаоса — фракталам. Фрактальная геометрия — неразлучная спутница теории хаоса, в чем вы еще не раз убедитесь, читая эту книгу.
Барнсли обнаружил, что при простой «игре в хаос», словно по волшебству, могут появляться листья папоротника и других растений. Игра в хаос заключается всего лишь в постепенном нанесении на лист бумаги последовательности точек, которая в пределе образует знакомую картину. Подведем итог: на основе случайного закона (Кант сказал бы: закона, не подчиняющегося намерению) при помощи компьютера мы способны породить лист растения. Для этого достаточно выбрать фиксированную точку (расположенную не в центре экрана) и начать подбрасывать монету.
Когда выпадет решка, отметим новую точку на расстоянии в 6 единиц на северо-запад от предыдущей. Когда выпадет орел, новую точку сдвинем на 25 % к центру относительно предыдущей. Очевидно, что это построение может повторяться произвольное число раз и изначально расположение точек будет казаться случайным.
Однако после нескольких тысяч бросков на экране непостижимым образом постепенно начнет проявляться лист папоротника. Хаос словно бы порождает порядок в виде фрактального множества — папоротника Барнсли.
Мы никогда не узнаем, что сказал бы великий кёнигсбергский философ, если бы смог охватить взглядом удивительное множество природных систем, строго детерминированных, но при этом обладающих хаотическим поведением со всеми вытекающими последствиями, то есть поведением случайным, или стохастическим (по-гречески stochastikos означает «умеющий угадывать»). Многие движения, кажущиеся беспорядочными, в действительности описываются строгими правилами, в которых нет места случайности. Таким образом, хаос и фракталы — это новый инструмент познания Вселенной.
«Спонтанное» появление папоротника Барнсли.
* * *
ОТРЫВОК ИЗ РОМАНА «ВЕК ПРОСВЕЩЕНИЯ» АЛЕХО КАРПЕНТЬЕРА
Наблюдая за улиткой, Эстебан думал о том, что на протяжении тысячелетий перед взором первобытных народов, живших рыбною ловлей, постоянно находилась спираль, но они еще не способны были не только постичь ее форму, но даже осознать ее присутствие. Он созерцал похожего на шар морского ежа, спиралевидную раковину моллюска, желобки на раковине святого Иакова и поражался богатству форм, открытых человечеству, которое, увы, не способно осмыслить то, что представало его глазам. «Верно, и ныне многое вокруг меня приняло четкие и определенные формы, но я не могу постичь их смысл!» — думал Эстебан. Какой знак, какая мысль, какое предупреждение таятся в завитках цикория, в немом языке мхов, в строгой форме плода миртового дерева? Созерцать улитку. Одну улитку… Те Deum…[2]
* * *
ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»
(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА
- Тираннозавр не намерен подчиняться правилам и распорядку, он — суть хаоса.
- Я не понимаю, что такое хаос. Что это значит?
- Это непредсказуемость в сложных системах. Проще говоря — эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.
Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?
- Скажем, к большому.
- Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?
- Не знаю. Туда же?
- Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.
- Как это называется?
- Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.
* * *
Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.