Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [8]
Пуанкаре разделил особые точки на четыре класса: центр, фокус, узел, седло. Названия классов заимствованы из гидродинамики, так как траектории (орбиты) на фазовой плоскости можно сравнить с потоком жидкости, распространяющимся по ней. Центры — это особые точки, окруженные периодическими орбитами; фокусы — особые точки, которые притягивают близлежащие траектории (они подобны водостокам фазовой плоскости); узлы, напротив, являются неустойчивыми, так как отталкивают близлежащие траектории (продолжая аналогию с гидродинамикой, такие точки можно сравнить с кранами, из которых льется вода на фазовую плоскость); наконец, седла — особые точки, которые являются устойчивыми и неустойчивыми одновременно. Седла — это точки, в которых словно бы сталкиваются два потока воды. Траектории, которые пересекаются точно в седле, называются сепаратрисами.
Седла Пуанкаре называл гомоклиническими точками, сепаратрисы — двоякоасимптотическими. В конце главы вы узнаете, почему он выбрал именно такие названия.
Слева — центр, справа — фокус.
Слева — узел, справа — седло идее сепаратрисы, которые в этом случае представляют собой две прямые, пересекающиеся в центральной точке.
Позднее Пуанкаре сформулировал теорему, которая сегодня называется теоремой Пуанкаре — Бендиксона (в честь шведского математика, закончившего ее доказательство). Согласно этой теореме, наряду с предельными циклами (замкнутыми кривыми, притягивающими соседние траектории) указанные выше разновидности особых точек являются единственно возможными на плоскости. Так как в двух измерениях существуют только центры, фокусы, узлы, седла и предельные циклы, то можно сказать, что количество траекторий, которые описывают решения дифференциальных уравнений, невелико: они могут описывать витки вокруг центра или предельного цикла, удаляться от узла, проходить вблизи седла или приближаться к фокусу. Все возможные варианты траектории можно пересчитать по пальцам одной руки.
Предельный цикл осциллятора Ван дер Поля. Он представляет собой замкнутую кривую (на рисунке — широкая линия), которая притягивает к себе все ближайшие траектории.
В 1881 году, за четыре года до проведения конкурса, Пуанкаре уже понимал, что созданную им новую качественную теорию можно использовать для решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Не напрасно лейтмотивом статьи «О кривых, определяемых дифференциальными уравнениями» стали вопросы: «Описывает ли движущаяся точка замкнутую кривую? Всегда ли эта кривая будет находиться в определенной части плоскости? Иными словами, если использовать астрономические термины, является ли орбита устойчивой?».
За несколько лет до проведения конкурса, в 1878 году, американский астроном Джордж Уильям Хилл привлек всеобщее внимание к важности периодических решений (замкнутых кривых) задачи об устойчивости Солнечной системы. Периодическое (то есть повторяющееся) движение очень полезно при изучении устойчивости: при таком движении тело никогда не сойдет с орбиты, не столкнется с другим телом и не улетит бесконечно далеко. Хилл нашел периодическое решение задачи трех тел для случая, когда масса одного из них пренебрежимо мала по сравнению с остальными.
Проблема Хилла представляла собой частный случай задачи трех тел, в котором легкая планета движется под действием сил притяжения двух одинаковых звезд, лежащих в одной плоскости. Изучив проблему Хилла, Пуанкаре доказал: эту проблему, равно как и общий случай задачи трех тел, нельзя решить классическими методами решения дифференциальных уравнений — в отличие от задачи двух тел (ее решили Ньютон, Бернулли и Эйлер), не все интегралы движения можно решить при помощи законов сохранения (энергии, импульса и так далее). Пуанкаре сделал вывод: какого-то одного общего решения задачи трех тел, выраженного в простых и привычных функциях, не существует.
У Пуанкаре оставался последний шанс — метод возмущений. Применив его, он нашел решения в виде бесконечных степенных рядов. Тем не менее ничто не указывало, что эти ряды (аналогичные ряды ранее получили Эйлер, Лагранж и Линдстедт) сходились, пусть они и удовлетворяли уравнениям задачи трех тел. В конечном счете Пуанкаре оставил попытки найти аналитическое решение задачи.
Лишь в 1909 году, то есть более чем 20 лет спустя, математик Карл Зундман (1873–1949) наконец представил общее решение задачи трех тел в виде сходящегося ряда. Искомый ряд сходился крайне медленно, а решение Зундмана было настолько сложным, что на практике оказалось совершенно бесполезным, но если бы он добился своего результата 20 годами ранее, то, возможно, получил бы премию от короля Оскара II.
Пуанкаре, оставив анализ, обратился к топологии, решив, что если он рассмотрит вопрос с другой стороны, то докажет существование периодических решений.
Так как устойчивость решений нельзя было оценить путем изучения рядов, Пуанкаре решил использовать свою качественную теорию дифференциальных уравнений: описывают ли эти решения замкнутые кривые, то есть являются ли они периодическими? Если движущееся тело описывает замкнутую кривую, то есть цикл, то рано или поздно его движение повторится, следовательно, движение тела будет периодическим. Вооружившись своей новой теорией, в которой были объединены анализ и топология, Пуанкаре показал: существует бесконечно много замкнутых кривых, а следовательно, бесконечно много периодических решений.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.