Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [39]

Шрифт
Интервал

Если мы представляем климат в виде аттрактора атмосферной системы, то эффект бабочки проявляться не будет. Однако, поскольку климатическая система нелинейна и, предположительно, обладает хаотическим поведением, то аттрактор будет странным и, возможно, будет иметь впадины, изобилующие крупными и мелкими деталями, то есть не слишком нестабильным. Представим, что климат описывается аттрактором системы Лоренца, и поворот вокруг его правого «крыла» означает, что пойдет дождь, а поворот вокруг левого «крыла» соответствует ясной погоде. В этом случае мы сможем определить закономерность, которой будет подчиняться климат в целом: в какие-то дни будет идти дождь, в другие — нет. Тем не менее нам сложно будет получить более подробную информацию, так как траектории вращаются вокруг каждого «крыла» аттрактора случайным образом.

Сегодня, спустя более 40 лет с момента открытия Лоренца, методы краткосрочного и среднесрочного прогнозирования существенно улучшились, поскольку развитию теории сопутствовало совершенствование суперкомпьютеров, способных снизить хаотичность погоды и климата. Одним из результатов этого развития стало появление так называемого ансамблевого, или комплексного прогноза (ensemble forecasting), который заключается в одновременном использовании нескольких множеств начальных условий и множеств математических моделей. Этот метод позволяет снизить ошибки при определении начальных условий и скомпенсировать ошибки, присущие непосредственно моделям.

Для краткосрочных (метеорологических) прогнозов, где преобладают ошибки, связанные с неопределенностью начальных условий, уже много лет успешно используется ансамблевый прогноз с одной моделью и множеством начальных условий. Иными словами, при прогнозировании погоды рассматривается развитие модели для похожих начальных условий, после чего путем сравнения различных результатов составляется итоговый прогноз. Как правило, эти результаты (порядка пятидесяти) для первых дней прогноза достаточно похожи, но после третьего или четвертого дня начинают проявляться расхождения, которые постепенно растут.



Комплексный прогноз температуры в Лондоне, составленный 26.06.1994 Европейским центром среднесрочного прогнозирования погоды (ECMWF). Начиная с четвертого дня разница в прогнозах составляет почти 16 °C (от 14 до 30 °С).


Для долгосрочных (климатических) прогнозов, где основную роль играют ошибки самих моделей, используется комплексный прогноз с несколькими моделями.

Иными словами, для одинаковых начальных условий рассматривается несколько моделей, после чего составляется итоговый прогноз путем взвешивания результатов. К примеру, на основе различных моделей Межправительственная группа экспертов по изменению климата определила, что рост средней мировой температуры к 2100 году относительно 2000 года составит от 2,2 до 4,7 °С. Результаты, полученные с помощью различных компьютерных моделей, неидентичны, и расхождения в результатах отражают степень неопределенности наших знаний о климате Земли.



Согласно глобальным моделям, средняя температура на планете к 2100 году возрастет на 2,2–4,7 °С, следовательно, неопределенность составляет почти 3 °С.


Развитие методов комплексного прогнозирования вызывает огромный интерес: ожидается, что они будут крайне полезны при прогнозировании глобальных изменений климата. Как бы то ни было, можно быть уверенными в одном: следует отказаться от мысли, что мы сможем найти универсальный алгоритм, позволяющий точно спрогнозировать динамику атмосферы в долгосрочной перспективе.


Когда математика превращается в экономику…

Заслуга Лоренца заключается в том, что он доказал: погода и, следовательно, климат, обладают хаотической, неустойчивой и непредсказуемой динамикой. Атмосфера — нелинейная и, очевидно, хаотическая система. Здесь хаос следует понимать не как нечто неупорядоченное, а скорее как порядок без периодичности. Климат — это хаотическая система в том смысле, что в ней могут наблюдаться непредсказуемые изменения даже в отсутствие внешнего воздействия. Одна из основных задач, стоящих перед исследователями сегодня, заключается в том, чтобы найти корректные математические модели хаотического климата, позволяющие совершить невозможное — предсказать будущее.

Как вы увидели, климатические модели — это математические модели, описывающие климат в прошлом и предсказывающие его в будущем. Существует сложная иерархия климатических моделей, начиная от самых простых, описывающих динамику средней мировой температуры посредством всего нескольких уравнений, до самых сложных, которые требуют использования суперкомпьютеров и описывают изменение нескольких климатических переменных (средней мировой температуры, ветра, влажности, океанических течений). Но даже самые сложные модели климата — это упрощения, так как до сих пор не найдены модели, позволяющие в точности описать прошлое и предсказать климат на локальном, а не на глобальном уровне. Недостаток вычислительных мощностей и ограниченные возможности прогнозирования затрудняют создание подробных моделей, необходимых для анализа изменений климата на уровне стран и регионов.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.