Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [40]
При решении этой нелинейной задачи ученые вынуждены делать выбор: или составить точную модель для прогнозирования (существование такой модели по определению невозможно), или остановиться на упрощенной модели, чтобы понять рассматриваемое явление в общих чертах. Один из великих физиков XX века Фримен Дайсон говорил: «Климатические модели — по сути, инструменты для понимания климата, которые все еще не позволяют предсказывать его. Не следует верить числам только потому, что они получены с помощью суперкомпьютера». Так как земной климат непредсказуем и имеет хаотическую природу, при его изучении не следует спешить с выводами.
Основная проблема, связанная с глобальным изменением климата, заключается в том, что его последствия могут оказаться фатальными. Мы не можем быть уверенными в том, как именно изменится климат, однако нельзя сидеть сложа руки и ждать — слишком велика потенциальная угроза экономике, а следовательно, и всем нам.
Расскажем, какой путь прошло международное сообщество от Монреальского до Киотского протокола. На прошедшей в Стокгольме в 1972 году конференции ООН, посвященной окружающей среде, было принято решение сделать основным принципом экологической политики принцип предосторожности. Иными словами, было принято решение о международном регулировании окружающей среды, чтобы скомпенсировать недостатки, присущие рынку. Первым шагом на этом пути стало обсуждение и принятие в 1980-е годы международного Монреальского протокола по веществам, разрушающим озоновый слой.
С учреждением Межправительственной группы экспертов по изменению климата в 1988 году (этой группой были опубликованы доклады в 1990, 1995, 2001 и 2007 годах) Организация Объединенных Наций начала борьбу с глобальным изменением климата. Позднее крайне важную роль сыграл саммит, прошедший в Рио-де-Жанейро в 1992 году (недаром он получил название «Саммит Земли»), где была принята Рамочная конвенция ООН об изменении климата, подготовленная вышеупомянутой группой экспертов. Спустя пять лет, в 1997 году, был принят так называемый Киотский протокол, целью которого было снижение выбросов газов, играющих важнейшую роль в парниковом эффекте, на 5,2 % по отношению к уровню выбросов базового 1990 года в период с 2008 по 2012 год. Этот протокол требует умеренного снижения выбросов чуть более чем на 1 млрд тонн СО>2 (для сравнения, все люди при дыхании выделяют около 2,5 млрд тонн СО>2 ежегодно). В 2004 году Россия подписала Киотский протокол, и он окончательно вступил в силу, так как его ратифицировали более 55 из 167 стран — членов рамочной конвенции.
Как мы уже неоднократно отмечали, глобальное изменение климата — многогранная проблема, и к неопределенности в научных моделях следует прибавить неопределенность в части затрат и результатов, связанных с выполнением Киотского протокола. В то время как члены международного сообщества быстро пришли к соглашению относительно Монреальского протокола по веществам, разрушающим озоновый слой (затраты на его реализацию были не слишком велики), Киотский протокол оказался непосильным для экономики некоторых стран. Суть этого протокола коротко можно выразить так: кто загрязняет, тот и платит.
Отметим, что ущерб, вызванный глобальным изменением климата, превышает затраты на реализацию Киотского протокола — так, в противоречивом докладе Николаса Стерна, подготовленном в 2007 году по заказу правительства Великобритании, указывается, что затраты, вызванные бездействием, составят от 5 до 20 % мирового ВВП. Однако истинная проблема заключается в том, что даже при успешной реализации протокола рост температуры уменьшится всего на 0,18 °С, то есть к 2100 году средняя мировая температура возрастет не на 3 °С, а на 2,82 °С. В этом сценарии глобальное потепление замедлится всего на 6 лет, и уже к 2106 году средняя мировая температура возрастет на 3 °С. Если сравнить затраты на исполнение протокола (примерно 4 % мирового ВВП) с выгодой от его реализации (разница в 0,18 °С), то результат кажется не слишком убедительным.
И даже если учесть, что борьба с глобальным изменением климата связана не только с экономикой, но и напрямую затрагивает жизни людей, то число умерших в результате глобального изменения климата будет не слишком ощутимым по сравнению, например, с числом умерших от болезней, которые до сих пор одолевают страны третьего мира. К примеру, число умерших в результате глобального изменения климата составит менее 5 % умерших от СПИДа, поэтому доступные ресурсы скорее следует потратить на решение более насущных проблем. Эколог-скептик Бьорн Аомборг отмечал, что половины совокупных расходов на реализацию Киотского протокола (около 8 млрд долларов) хватит на то, чтобы решить проблему голода во всем мире. Возможно, истинные проблемы третьего мира — это голод и контроль рождаемости, а не глобальное изменение климата и бережное отношение к окружающей среде. Многие экономисты указывают, что Африке нужно не экологическое сельское хозяйство, а сельское хозяйство как таковое. Более выгодным окажется распространение экологически чистых технологий в странах второго и третьего мира наряду с экономией электроэнергии и применением ядерной, гидравлической, ветровой и солнечной энергетики в развитых странах.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.