Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [40]
При решении этой нелинейной задачи ученые вынуждены делать выбор: или составить точную модель для прогнозирования (существование такой модели по определению невозможно), или остановиться на упрощенной модели, чтобы понять рассматриваемое явление в общих чертах. Один из великих физиков XX века Фримен Дайсон говорил: «Климатические модели — по сути, инструменты для понимания климата, которые все еще не позволяют предсказывать его. Не следует верить числам только потому, что они получены с помощью суперкомпьютера». Так как земной климат непредсказуем и имеет хаотическую природу, при его изучении не следует спешить с выводами.
Основная проблема, связанная с глобальным изменением климата, заключается в том, что его последствия могут оказаться фатальными. Мы не можем быть уверенными в том, как именно изменится климат, однако нельзя сидеть сложа руки и ждать — слишком велика потенциальная угроза экономике, а следовательно, и всем нам.
Расскажем, какой путь прошло международное сообщество от Монреальского до Киотского протокола. На прошедшей в Стокгольме в 1972 году конференции ООН, посвященной окружающей среде, было принято решение сделать основным принципом экологической политики принцип предосторожности. Иными словами, было принято решение о международном регулировании окружающей среды, чтобы скомпенсировать недостатки, присущие рынку. Первым шагом на этом пути стало обсуждение и принятие в 1980-е годы международного Монреальского протокола по веществам, разрушающим озоновый слой.
С учреждением Межправительственной группы экспертов по изменению климата в 1988 году (этой группой были опубликованы доклады в 1990, 1995, 2001 и 2007 годах) Организация Объединенных Наций начала борьбу с глобальным изменением климата. Позднее крайне важную роль сыграл саммит, прошедший в Рио-де-Жанейро в 1992 году (недаром он получил название «Саммит Земли»), где была принята Рамочная конвенция ООН об изменении климата, подготовленная вышеупомянутой группой экспертов. Спустя пять лет, в 1997 году, был принят так называемый Киотский протокол, целью которого было снижение выбросов газов, играющих важнейшую роль в парниковом эффекте, на 5,2 % по отношению к уровню выбросов базового 1990 года в период с 2008 по 2012 год. Этот протокол требует умеренного снижения выбросов чуть более чем на 1 млрд тонн СО>2 (для сравнения, все люди при дыхании выделяют около 2,5 млрд тонн СО>2 ежегодно). В 2004 году Россия подписала Киотский протокол, и он окончательно вступил в силу, так как его ратифицировали более 55 из 167 стран — членов рамочной конвенции.
Как мы уже неоднократно отмечали, глобальное изменение климата — многогранная проблема, и к неопределенности в научных моделях следует прибавить неопределенность в части затрат и результатов, связанных с выполнением Киотского протокола. В то время как члены международного сообщества быстро пришли к соглашению относительно Монреальского протокола по веществам, разрушающим озоновый слой (затраты на его реализацию были не слишком велики), Киотский протокол оказался непосильным для экономики некоторых стран. Суть этого протокола коротко можно выразить так: кто загрязняет, тот и платит.
Отметим, что ущерб, вызванный глобальным изменением климата, превышает затраты на реализацию Киотского протокола — так, в противоречивом докладе Николаса Стерна, подготовленном в 2007 году по заказу правительства Великобритании, указывается, что затраты, вызванные бездействием, составят от 5 до 20 % мирового ВВП. Однако истинная проблема заключается в том, что даже при успешной реализации протокола рост температуры уменьшится всего на 0,18 °С, то есть к 2100 году средняя мировая температура возрастет не на 3 °С, а на 2,82 °С. В этом сценарии глобальное потепление замедлится всего на 6 лет, и уже к 2106 году средняя мировая температура возрастет на 3 °С. Если сравнить затраты на исполнение протокола (примерно 4 % мирового ВВП) с выгодой от его реализации (разница в 0,18 °С), то результат кажется не слишком убедительным.
И даже если учесть, что борьба с глобальным изменением климата связана не только с экономикой, но и напрямую затрагивает жизни людей, то число умерших в результате глобального изменения климата будет не слишком ощутимым по сравнению, например, с числом умерших от болезней, которые до сих пор одолевают страны третьего мира. К примеру, число умерших в результате глобального изменения климата составит менее 5 % умерших от СПИДа, поэтому доступные ресурсы скорее следует потратить на решение более насущных проблем. Эколог-скептик Бьорн Аомборг отмечал, что половины совокупных расходов на реализацию Киотского протокола (около 8 млрд долларов) хватит на то, чтобы решить проблему голода во всем мире. Возможно, истинные проблемы третьего мира — это голод и контроль рождаемости, а не глобальное изменение климата и бережное отношение к окружающей среде. Многие экономисты указывают, что Африке нужно не экологическое сельское хозяйство, а сельское хозяйство как таковое. Более выгодным окажется распространение экологически чистых технологий в странах второго и третьего мира наряду с экономией электроэнергии и применением ядерной, гидравлической, ветровой и солнечной энергетики в развитых странах.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.