Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [20]

Шрифт
Интервал

* * *


Слишком громкая революция

Несмотря на вышесказанное, объективная и не лишенная скепсиса характеристика, приведенная Давидом Рюэлем в книге «Случайность и хаос», полностью корректна:

«Математическая теория дифференцируемых динамических систем выиграла от притока «хаотических» идей и в целом не пострадала от современной тенденции (техническая сложность математики препятствует мошенничеству). Однако физика хаоса, несмотря на частые триумфальные объявления о «новых» прорывах, в настоящее время практически не дает интересных открытий.

Мы не будем излагать искаженное видение хаоса, характерное для некоторых постмодернистов и других мыслителей. Критики утверждают, что высокая популярность теории хаоса и фрактальной геометрии не соответствует их реальной научной ценности. Теория хаоса применяется даже при анализе художественных произведений и в управлении предприятиями.

Нельзя отрицать, что хаос открыл новый путь в науке. Эту новую науку, объединяющую множество дисциплин, математики называют теорией хаоса, или теорией динамических систем, физики — нелинейной динамикой, все остальные — нелинейной наукой. Это наука об эффекте бабочки, о чувствительности к начальным условиям, о случайных, беспорядочных и неправильных траекториях, о непериодическом и нестабильном поведении, о гомоклинических орбитах, о растяжении и складывании траекторий, о странных аттракторах и многом, многом другом. Войдем же в дверь, которую открыла перед нами теория хаоса.

* * *

ХАОС НА ЗЕМЛЕ И НА НЕБЕ

Если Роберт Мэй представил парадигму дискретной хаотической динамической системы в одном измерении (логистическое отображение), то французский астроном Мишель Эно предложил парадигму дискретной хаотической динамической системы в двух измерениях — так называемое отображение Эно. В 1976 году, спустя несколько лет после того, как свет увидела работа Лоренца с описанием модели непрерывной хаотической динамической системы, Эно опубликовал статью «Двухмерное отображение со странным аттрактором», в которой представил преобразование плоскости, определяемое формулой


где а и b — две постоянные, которые обычно принимаются как а = 1,4 и b = 0,3. Это отображение Н представляет собой упрощенную версию сечения Пуанкаре для аттрактора Лоренца.

Если мы применим Н несколько раз подряд к квадрату, то увидим, как он будет менять форму: сначала он будет превращаться во все более вытянутый четырехугольник, затем — в бесконечно запутанную подкову. Эта бесконечно запутанная структура (фрактал), к которой приближаются последовательные итерации Н, и будет странным аттрактором Эно.

Хотя Эно утверждал, что описал странный аттрактор (то есть аттрактор, имеющий фрактальную природу), правильность его выводов подтвердили шведские математики Майкл Бенедикс и Леннарт Карлесон лишь в 1991 году.



Аттрактор Эно имеет фрактальную структуру, то есть обладает самоподобием (он повторяется в различных масштабах снова и снова).

Глава 3. Но, господин математик, что такое этот ваш детерминированный хаос?

Но, господин математик, что такое этот ваш детерминированный хаос?

Кто исчислит песок Иакова и число четвертой части Израиля?

Числа, глава 23, стих 10

Мефистофель: Как предречь игру судьбины?

Иоганн Вольфганг Гёте, «Фауст»

Бог и Дьявол сошлись в одном: способность человека предсказывать будущее безнадежно ограничена. Теория относительности Эйнштейна избавила ученых от иллюзий об относительном пространстве и времени, описанных в классической физике Ньютона, квантовая теория Бора, Планка и Гейзенберга, в свою очередь, покончила с мечтами о точных измерениях, а теория хаоса в одночасье уничтожила фантазии о возможностях предсказания будущего.

Самым важным ударом по традиционной мысли стало понимание того, что предсказать поведение многих систем на больших интервалах времени в принципе невозможно, так как решения уравнений, описывающих движение этих систем, крайне неустойчивы. Сложное поведение подобных систем вызвано не внешним воздействием, не обилием степеней свободы и не квантовыми эффектами. Уравнения, описывающие движение системы, детерминированы, однако их решения обладают стохастическими свойствами. Это явление называется детерминированным хаосом.

Попытаемся объяснить детерминированный хаос с точки зрения математики, ведь, как говорил Чарльз Дарвин, «математика наделяет человека новым, шестым чувством».


Хаос и сложность

Хаотические и сложные системы на протяжении многих десятилетий были забыты официальной наукой. Наука XX века позволила понять, из какой ткани соткана Вселенная, познать относительность пространства-времени и микрокосм квантовой механики (его можно сравнить с игровым полем), а современная наука помогает лучше понять, как устроена наша реальность (то есть фишки на игровом поле). Однако подлинное величие науки в конечном итоге проявляется на практике, и лишь теперь, в начале XXI века, мы постепенно начинаем осознавать важность теории хаоса и наук о сложности.

В действительности теория хаоса — лишь одна из так называемых наук о сложности, так как хаотические системы — это всего одна из разновидностей сложных систем. Существуют и другие науки о сложности: фрактальная геометрия, теория катастроф, нечеткая логика и другие. Говорят, что описать класс систем, изучаемых в теории хаоса, сложно, потому что они находятся на полпути между порядком и беспорядком, словно между двух огней. Если крайне упорядоченные системы (например, хрусталь) или очень неупорядоченные системы (например, дым) просты и описать их несложно, то описать промежуточные системы сложнее всего. В частности, хаотические системы — это нелинейные детерминированные системы, обладающие непериодическим поведением, в силу которого они становятся непредсказуемыми. Согласно китайской пословице, взмах крыльев бабочки можно ощутить на другой стороне Земли. Или, как писал математик Блез Паскаль, будь нос Клеопатры чуть покороче, облик Земли стал бы иным: Октавиан влюбился бы в Клеопатру и не стал бы первым римским императором. Кроме того, как вы увидите чуть позже, хаотические системы вездесущи: их можно встретить в математике, физике, астрофизике, метеорологии, биологии и медицине. Иными словами, почти все (или даже все) реальные системы обладают хаотической динамикой.


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.