Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [18]

Шрифт
Интервал


Лоренц: кофе, компьютер, бабочка

Вернемся в Соединенные Штаты. Там в 1963 году юный метеоролог из MIT по имени Эдвард Нортон Лоренц (1917–2008), который учился у Биркхофа в Гарварде, сформулировал модель из трех обыкновенных дифференциальных уравнений для описания движения потока жидкости под действием градиента температур. Эта модель представляла собой упрощенное описание конвекции в атмосфере, то есть движение потоков горячего и холодного воздуха в условиях заметной разницы температур: горячий воздух поднимается вверх и, достигнув верхних слоев атмосферы, охлаждается, после чего вновь опускается к поверхности Земли. При некоторых значениях постоянных дифференциальные уравнения модели описывали начало нестационарной конвекции.

Однажды во время поиска численных решений с помощью компьютера Royal МсВее LGP-30, первого персонального компьютера в мире, Лоренц отлучился выпить чашку кофе и, вернувшись, обнаружил, что система демонстрирует крайне нестабильное, хаотическое поведение. Компьютер распечатал список очень странных значений, в которых не прослеживалось какой-либо закономерности. Лоренц счел, что произошла какая-то ошибка, и повторил расчеты. Но всякий раз он получал те же необычные результаты. Списки чисел начинались с почти одинаковых значений, которые затем становились принципиально различными. Лоренц по счастливой случайности столкнулся с феноменом чувствительности к начальным условиям.

Он заметил, что система была крайне неустойчивой даже при малейших изменениях. Незначительное изменение начальных условий приводило к тому, что конечные состояния системы оказывались принципиально разными. Предоставим слово самому Лоренцу:

«Два неотличимо различающихся состояния могут породить два существенно различных состояния. Если допущена какая-либо ошибка при наблюдении текущего состояния системы (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем будет невозможно».

Позаимствованный Лоренцем образ в итоге занял важное место в науке: взмах крыльев бабочки в Бразилии мог вызвать торнадо в Техасе. Это явление получило название эффект бабочки. И действительно, представим, что маленькая бабочка сидит на ветке дерева в далекой Амазонии и время от времени раскрывает и закрывает крылья. Допустим, что она взмахнула крыльями ровно два раза. Так как атмосфера — это хаотическая система, чувствительная к начальным условиям, малейшее отклонение потоков воздуха рядом с бабочкой может в конечном итоге вызвать ураган над Техасом спустя несколько месяцев.

Этот феномен стал широко известен в 1972 году, когда на заседании Американской ассоциации содействия развитию науки Лоренц выступил с докладом на тему «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?», хотя еще в 1963 году один метеоролог так прокомментировал результаты исследования Лоренца: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду».

Популярная метафора о взмахе крыльев бабочки стала известной благодаря Лоренцу, а выражение «чувствительность к начальным условиям» ввел американский математик Гукенхеймер уже в 1970-е. В любом случае результат один: в силу хаотической динамики изначально совпадающие траектории постепенно отделяются друг от друга и расходятся.

Подобно спискам чисел, графики, приведенные Лоренцем в статье, изображали ряд колебаний, которые возрастали и в конечном итоге становились хаотическими.

Изначально траектория системы была периодической, но затем начинала испытывать сильные колебания, не подчиняющиеся какой-либо закономерности. Траектории вращались, по всей видимости, случайно, вокруг фигуры, напоминавшей восьмерку или крылья бабочки. Иногда траектории вращались несколько раз подряд вокруг одной половины этой фигуры, затем вокруг второй ее половины другое число раз. С течением времени близлежащие траектории отдалялись друг от друга по мере того, как они растягивались и складывались вблизи этой странной фигуры. При растяжениях близлежащие траектории разделялись, ошибки прогноза увеличивались. Затем, когда траектории складывались, они сплетались между собой. Этой странной фигурой, вблизи которой находились траектории, был аттрактор Лоренца.



В отличие от предсказуемых классических аттракторов (точек или предельных циклов), странные, или хаотические аттракторы, в частности аттрактор Лоренца, описывают непредсказуемые движения и имеют более сложную форму.


Лоренц опубликовал результаты своего открытия в метеорологическом журнале. Статья называлась «Детерминированный непериодический поток» и осталась практически незамеченной. Хотя Лоренц был метеорологом, он хотел быть математиком, однако эти планы нарушила Вторая мировая война. Математическое открытие Лоренца оказалось неактуальным, и статья пролежала на библиотечных полках почти 10 лет.

Только профессор Джеймс Иорк (род. 1941) из Мэрилендского университета смог распознать научные и философские последствия работы Лоренца: в упомянутой нами статье от 1963 года слились воедино (доказательством чему служит список источников, приведенный Лоренцем) топологические исследования нелинейных систем Пуанкаре, теория динамических систем Биркхофа и (внимание!) традиции советской математической школы, изложенные в книге «Качественная теория дифференциальных уравнений» Немыцкого и Степанова, изданной в Москве в 1949 году и переведенной на английский язык в 1960-м.


Рекомендуем почитать
Математические головоломки профессора Стюарта

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.