Том 28. Математика жизни. Численные модели в биологии и экологии - [6]

Шрифт
Интервал

Глобальное видение природы, в которой система рассматривается как «всё», известно как холизм. В XX веке холизм оказал огромное влияние на то, как мы видим мир. Это влияние проявилось не только в биологии, но и в социологии, экономике, химии и даже лингвистике. Холизм повлиял и на способы применения математики для изучения реального мира. В экологии он был введен школой северо-американских экологов во главе с Говардом Одумом. В 1950-е годы Одум радикально изменил методы изучения всех проблем, связанных с окружающей средой, что вызвало появление системной биологии. В рамках этой дисциплины ученые рассматривают любое биологическое явление с холистической точки зрения и описывают событие посредством математической модели. К примеру, одна из классических моделей этой дисциплины — первая модель органа, созданная с помощью компьютера, а именно модель сердца, представленная Денисом Ноблом в 1960 году в журнале Nature. Этот британский исследователь сыграл важную роль в международном проекте Physiome, начатом в 1990-е годы, целью которого была расшифровка генома — совокупности генов организма. Расшифровка производилась с помощью компьютерного моделирования с использованием математических моделей физиологии.



Веб-страница одного из множества учреждений, связанных с проектом Physiome в сфере системной биологии.


Одной из особенностей проекта была интеграция разных уровней, начиная от биохимии и отдельных клеток и заканчивая целыми органами. Любопытная черта системной биологии заключается в том, что в этой дисциплине проекты реализуются междисциплинарными рабочими группами с участием биологов, физиков, математиков, информатиков и других специалистов. Противоположным подходом является редукционизм, который довольно долго применялся в биологии под влиянием многочисленных успехов молекулярной биологии. Прогресс в этой дисциплине привел к тому, что математическая биология на некоторое время ушла в тень, как и любые попытки «заняться математикой жизни». И все же накопление экспериментальных данных молекулярной биологии, а также удивительные успехи в изучении генов, белков и метаболизма во второй половине XX века привели к появлению геномики, протеомики и метаболомики — трех новых дисциплин, которые быстро начали набирать популярность во всем мире. Это заставило вновь вспомнить о системной биологии, а вместе с ней — и об изучении жизни количественными методами. Системная биология вновь вошла в моду лишь в конце XX столетия, и одновременно с этим вновь пробудился интерес к математической биологии.


1970-е — время перемен

В 1970-х годах ученые начали принципиально иначе рассматривать биологические явления, изменилась и «математика жизни». Решающее влияние на этот процесс оказали идеи Ильи Романовича Пригожина, лауреата Нобелевской премии по химии 1977 года. Согласно его теории диссипативных структур, системы, которые непрерывно обмениваются материей и энергией с окружающей средой (к ним относятся сложные химические реакции или ураганы), функционируют благодаря тому, что далеки от равновесного состояния. Одной из характеристик диссипативных систем является образование сложных структур, которые порой кажутся хаотичными. Эта особенность привлекла внимание ученых, вновь пересмотревших решения классических задач биологии. Биоматематики вернулись к давно известным проблемам, интерпретировав их в соответствии с теориями Пригожина. В качестве примера можно привести узоры, изученные Тьюрингом. По мнению ученого, однородная ткань, состоящая из очень похожих друг на друга зародышевых клеток, например клеток кожи позвоночных, находится в равновесном состоянии. Но как только между клетками начинают возникать отличия, на шкуре животного проявляется узор из полосок или пятен. Сохранение этого узора в течение всей жизни животного Тьюринг и Пригожин трактовали как ситуацию, далекую от равновесного состояния. Как следствие, уравнения реакции — диффузии стали одним из основных формальных инструментов, которые позволили биоматематикам изучить некоторые диссипативные системы, например уже упомянутые узоры на шкуре некоторых позвоночных.



Бельгийская марка, выпущенная в честь Ильи Пригожина (1917–2003) за два года до смерти этого выдающегося русского ученого.


Еще одной характеристикой систем, далеких от равновесного состояния, являются их колебания. В качестве примера приведем знаменитые уравнения «хищник — жертва» Лотки — Вольтерры. К сожалению, не существует универсальных принципов, управляющих формированием описанных узоров в диссипативных системах. Однако если система находится в равновесии, образования узоров не происходит. К примеру, трехмерное представление белка всегда остается неизменным. Почему? Ответ прост: белок находится в наиболее стабильном состоянии, требующем минимальных энергозатрат. Еще один пример системы, находящейся в равновесном состоянии, — химическая реакция:

АВ —> С + D.

Если вещества А и В преобразуются в С и D с той же скоростью, что С и D преобразуются обратно в А и В, то реакция находится в равновесном состоянии. Предположим, что равновесие оказалось нарушено. Если скорость, с которой вещества


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.