Том 28. Математика жизни. Численные модели в биологии и экологии - [7]

Шрифт
Интервал

и В преобразуются в С и D, не равна скорости протекания обратного процесса, реакция будет находиться в неравновесном состоянии. Общих правил, описывающих неравновесные, диссипативные системы, не существует, как и общего математического метода их изучения, поэтому используется компьютерное моделирование — особенно полезное с учетом того, что в жизни встречается множество примеров диссипативных систем. Описанные выше идеи постепенно сформировали современное видение биологии и, как следствие, способствовали ее математической формализации.


Современная математическая биология

Изучение систем, находящихся в неравновесном состоянии, и поиск вычислительных методов, позволяющих смоделировать подобные системы, стали популярны в 1980-е и 1990-е годы при изучении нелинейных систем, то есть систем, поведение которых нельзя представить как сумму поведений их частей. Основная причина этого в том, что части нелинейных систем взаимодействуют друг с другом. Вновь рассмотрим примитивный живой организм и предположим, что он имеет всего два органа — х и у. Если поведение этого организма нелинейное, то жизненное состояние организма f(z) будет равно, к примеру, произведению, а не сумме состояний его органов f(х) и f(у). В качестве примера из повседневной жизни можно привести прием лекарств.

Если вы примете два лекарства или более, их совокупный терапевтический эффект не будет равен сумме эффектов отдельных медикаментов. Как правило, они вступают в реакцию между собой, причем часто во вред организму.



Нелинейные системы: их сложно изучить, так как не существует одного математического метода, описывающего их все, хотя их поведение и похоже. К примеру, если мы подтолкнем маятник, он будет совершать колебания до тех пор, пока не остановится. Похожие ситуации наблюдаются в иммунной системе и в долговременной памяти человека.


Любопытная особенность нелинейных систем состоит в том, что их поведение может быть хаотическим. Хаотические системы — это системы, обладающие сложным поведением, которое непросто спрогнозировать, так как они одновременно стремятся к равновесному состоянию и отдаляются от него. К примеру, атмосфера и климат, тектонические плиты, эпилепсия, популяции и многие другие явления, о которых мы расскажем в этой книге, представляют собой хаотические системы и описываются уравнением Ферхюльста. Изучение хаоса стало популярным в биологии благодаря фракталам — их характерным примером в природе является ветвление растений.

В середине 1980-х ученые объединили нелинейные, хаотические и диссипативные системы в одно целое — сложные системы, изучению которых в биологии уделяется наибольшее внимание. К таким системам относятся, например, муравейники, мозг, иммунная система, клетка, морфогенез или экосистемы. В некоторых случаях сложные системы изучаются с применением стандартных методов математической биологии. Однако некоторые системы настолько сложны, что изучить их можно только альтернативными компьютерными методами, позволяющими найти лишь приближенные решения. Такие методы называются эвристическими. К примеру, в настоящее время метод клеточных автоматов является одной из альтернатив моделированию сложных систем, для которых неизвестны описывающие их дифференциальные уравнения. Классический пример клеточного автомата — колония муравьев. В некоторых случаях, несмотря на то что дифференциальные уравнения, описывающие систему, известны (например, в случае с пятнами на коже позвоночных), поведение системы быстрее и удобнее смоделировать с помощью клеточных автоматов. Кроме того, клеточные автоматы позволяют наглядно изобразить узоры, к примеру полоски зебры, что при использовании дифференциальных уравнений невозможно. Еще одним примером служит клеточный автомат Ва-Top, описывающий модель «хищник — жертва» Лотки — Вольтерры.

В этой главе мы коротко обрисовали основные этапы развития математической биологии. Обратите внимание, что не только зарождение, но и последующее развитие этой дисциплины неизменно находилось под большим влиянием преобладавших на тот момент физических интерпретаций жизни. Более того, математическая биология — это дисциплина, которая способствовала тщательному анализу биологических явлений и экспериментальных данных. Сегодня одним из самых важных достижений математической биологии являются математические модели, позволяющие проводить с помощью компьютера сложные эксперименты.


Математические модели в биологии

Человек всегда испытывал потребность понимать, контролировать и предсказывать поведение всего сущего. Для этого ученые всех времен и народов создавали модели окружающего мира, то есть представления или абстракции некоторой системы или явления.

Модель обладает несколькими полезными свойствами. С одной стороны, она позволяет понять и объяснить то или иное явление — в качестве примера можно привести модель клеточного цикла или метаболизма глюкозы. С другой стороны, что особенно важно, она позволяет предсказать состояние или поведение изучаемой системы в будущем: это может быть прогнозирование климата или описание какой-либо гипотетической ситуации, например воздействия аварии на атомной электростанции на флору и фауну региона.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Библейские игры

Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.


Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.