Том 28. Математика жизни. Численные модели в биологии и экологии - [8]
Также компьютерное моделирование позволяет ученым проверить те или иные гипотезы. К примеру, можно провести эксперимент, опровергающий гипотезу о происхождении жизни или позволяющий рассмотреть механизм эволюции конкретного вида. Модель может использоваться и для того, чтобы вдохновить, например, группу инженеров на поиски решения задачи. В любом случае построение моделей очень важно как в силу их практической ценности, так и из-за того, что моделирование — единственный способ, который позволяет постепенно выстроить картину окружающего мира.
В биологии, как и в других науках, наиболее полезны математические модели: они в абстрактной форме представляют систему или явление с использованием языка и формальных средств математики. К примеру, в модели клетки, сердца или экосистемы составные части объекта и взаимодействие между ними представлены математическими выражениями. Эти выражения связывают множество входных переменных I>1, I>2, …, I>n и выходную переменную О. Входные переменные обозначают величины, которые можно наблюдать (и измерить) в ходе эксперимента. Обычно одна из этих переменных — время, t. Она обозначает момент времени, в который были получены входные значения I>1(t), I>2(t), …, I>n(t). Как только эти значения определяются экспериментально или любым другим способом (например, на основе каких-либо теоретических предпосылок), они вводятся в модель. Используя математические выражения модели, ученый определяет значение выходной переменной O(t), которое отражает какое-либо свойство системы. Обычно этим свойством является состояние или поведение системы в определенный момент времени t.
В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.
Для определения приближенного значения параметра используются сложные статистические методы. Однако иногда это значение уже известно: его можно найти в таблицах, опубликованных другими исследователями. В качестве примера можно привести калорийность продуктов в модели, связанной с диетами. Другие известные параметры — это сезонный уровень заболеваемости гриппом или время роста культуры бактерий. Параметры связывают входные переменные I>1(t), I>2(t), …, I>n(t) с выходной переменной O(t) посредством выражений математической модели.
Математическая модель, входные переменные (I) и выходная переменная (О).
Моделирование — одно из основных понятий современной науки — заключается в прогнозировании будущего состояния системы, O(t + 1), на основе определенной вычислительной модели. К примеру, прогноз погоды на ближайшие дни основан на вычислительной модели климата, прогнозирование численности волков и зайцев в определенном регионе производится на основе модели «хищник — жертва», а число людей, которые заболеют сезонным гриппом, можно спрогнозировать с помощью вычислительной модели эпидемии гриппа. Таким образом, для составления прогнозов требуется вычислительная модель.
В общем случае такая модель — это компьютерная программа, написанная на одном из языков программирования (Visual Basic, С/C++, Java и т. д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если…?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.
Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия — это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I>1(0), I>2(0)…, I>n(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь — умерли, то начальные условия таковы: I>1(0) = 1247, I>2(0) = 1240 и I>3(0) = 7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?
Во-вторых, моделирование может заключаться в изменении параметров и оценке воздействия новых значений на будущее состояние системы. Что произойдет в примере со свиным гриппом, если вместо уровня смертности в 0,78 % использовать значение в 2,96 %? Каким в этом случае будет уровень смертности через месяц?
В-третьих, моделирование может заключаться в определении будущего состояния системы при заданных начальных условиях и некоторых значениях определенных параметров.
* * *
СРАВНЕНИЕ МОДЕЛЕЙ
В некоторых ситуациях моделирование может состоять в прогнозировании явления путем сравнения прогнозов, полученных с помощью различных вычислительных моделей. Такая ситуация может сложиться, когда одно явление описывается несколькими математическими моделями. К примеру, можно сравнить различные математические модели климата для одной и той же ситуации, смоделировать поведение колонии муравьев с помощью разных вычислительных моделей или определить число хищников и жертв, сравнив данные, полученные с использованием клеточных автоматов, с данными, полученными по уравнениям Лотки — Вольтерры.
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.