Том 28. Математика жизни. Численные модели в биологии и экологии

Том 28. Математика жизни. Численные модели в биологии и экологии

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Жанр: Математика
Серии: -
Всего страниц: 40
ISBN: 978-5-9774-0723-6
Год издания: 2014
Формат: Полный

Том 28. Математика жизни. Численные модели в биологии и экологии читать онлайн бесплатно

Шрифт
Интервал

Предисловие

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается далеко не одна биология. Физики, а затем и математики обнаружили ряд биологических явлений, которые можно описать на математическом языке. Николай Рашевский, Карл Людвиг фон Берталанфи и Алан Тьюринг положили начало плодотворному союзу математического формализма и науки о жизни, а компьютеры позволили ученым проводить количественные исследования биологических явлений. Так родилась новая дисциплина — математическая биология, или биоматематика. Математическая биология внесла и продолжает вносить свой вклад в развитие биологии как посредством теоретического изучения динамических систем (мозга, муравейника или экосистем), так и благодаря решению практических задач в ходе изучения раковых заболеваний, эпидемий СПИДа или свиного гриппа.

Сегодня ответы на множество вопросов биологии и биомедицины можно дать с помощью математического анализа. Так, размножение раковых клеток в опухолях определенного типа описывается функцией Гомпертца. Во многих процессах в сфере биотехнологий при мониторинге биореакторов используются дифференциальные уравнения. Даже такие проблемы современности, как возможное изменение климата Земли, изучаются с помощью математических моделей, в частности климатической модели Лоренца.

В этой книге представлен панорамный обзор различных аспектов биоматематики.

В первой главе мы говорим об основных достижениях этой науки и ее историческом развитии. Во второй главе показана возможность использования дифференциальных уравнений для описания динамики биологических явлений, то есть явлений, благодаря которым становится возможным сохранение жизни. Эти уравнения очень важны для человечества, так как позволяют решить бесчисленное множество задач, от демографических проблем, о которых писал еще Мальтус в 1798 году, до определения возраста ископаемых посредством радиоуглеродного анализа (этот метод предложил Уиллард Либби в 1950 году).

Математика, конечно же, не смогла остаться в стороне от еще одного притягательного явления. Хаос, о котором мы поговорим в третьей главе, присутствует повсеместно, будь то рост населения, поведение биржевых индексов или электроэнцефалограмма человека. В этой же главе мы рассмотрим еще одну тему, связанную с хаосом, — фракталы, их присутствие в природе (в частности, в виде снежинок или ветвей деревьев), способы графического представления фракталов с помощью компьютера. Хаос и фракталы нельзя изучить без краткого рассмотрения комплексных чисел, а не имея представления о комплексных числах, невозможно понять даже самые яркие и наглядные особенности мира фракталов.

В четвертой главе показано, что математическая биология по большей части основана на использовании числовых таблиц, или матриц, и основную роль в ней играют операции над матрицами. В завершение главы мы рассмотрим законы Менделя и познакомимся с одним из важнейших понятий биологии — полным факторным экспериментом. В пятой главе освещается еще одно математическое понятие, играющее особую роль благодаря множеству способов применения, — векторы. Мы опишем использование векторов в биомеханике, при моделировании нейронных сетей и решении систем линейных уравнений.

И в завершение удивительного путешествия вы узнаете о взаимосвязи математики и экологии. Сегодня ни один проект по охране окружающей среды не обходится без использования формального математического аппарата. В шестой главе мы определим понятие экосистемы и представим матричные популяционные модели, особенно полезные при изучении и сохранении популяций. Отдельно мы рассмотрим одну из классических моделей математической биологии — модель «хищник — жертва» Лотки — Вольтерры[1]. Следующий дискуссионный вопрос, на котором мы остановимся, звучит так: ждет ли нас глобальное изменение климата? Вы увидите, что проблема изменения климата имеет математическую природу, поэтому ответ на поставленный вопрос нельзя дать без знания климатических моделей и применяемого в них математического аппарата. Книга завершается анализом «Маргариткового мира» — математической модели, созданной Джеймсом Лавлоком в 1980-е годы на основе гипотезы Геи. Эта модель бросает вызов дарвинизму и классическим представлениям о сохранении жизни на планете.

Глава 1

Математическая биология в исторической перспективе

В начале XX века Россия напоминала бурлящий котел. Глубокий экономический кризис и социальное недовольство, возникшие после поражения в русско-японской войне 1904–1905 годов и начала Первой мировой войны с Германией в 1914 году, привели к Октябрьской революции. Из-за этих событий физик-теоретик украинского происхождения Николай Рашевский (1899–1972), который сегодня считается создателем математической биологии, вместе с супругой Эмилией покинул страну. Сменив несколько государств, в 1924 году Рашевские осели в США.


Рождение математической биологии

Оказавшись на американской земле, Рашевский приступил к работе в исследовательской лаборатории компании Westinghouse, где занялся изучением деления клеток. Таким образом, деление клеток впервые было рассмотрено с точки зрения физики и математики — подобный подход в те годы считался невероятно передовым.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Химия здорового питания

Доктор Уиллет из Гарвардской медицинской школы разоблачает диетологические мифы и предлагает широкому кругу читателей новую «пирамиду здорового питания» (с опорой на результаты последних научных исследований о самых полезных для человеческого здоровья углеводах, жирах и белках), дает образцы меню и новейшие рецепты, способствующие профилактике многих хронических заболеваний.Для широкого круга читателей.


Средневековые арабские повести и новеллы

В сборнике представлены образцы распространенных на средневековом Арабском Востоке анонимных повестей и новелл, входящих в широко известный цикл «1001 ночь». Все включенные в сборник произведения переводятся не по каноническому тексту цикла, а по рукописным вариантам, имевшим хождение на Востоке.


Лена Сквоттер и парагон возмездия

Новый роман одного из ведущих отечественных фантастов Леонида Каганова — это неподражаемо изящный авторский стиль, острый сюжет и тонкий, блистательный, интеллектуальный юмор.Едва увидев свет, эта книга стала общероссийской литературной сенсацией. С тех пор она приводит в восторг психоаналитиков и домохозяек, адептов дзен-буддизма и маститых бизнесменов, мастеров НЛП и безалаберных студентов. Ею зачитываются философы, психологи, экстрасенсы и маги. Одни считают, что эта книга — сплав мощнейших современных психотехнологий и поразительных философских прозрений.


Ничего не случилось…

Действие романа А. Колбергса происходит в то время, когда «застой» уже признается фактом, но никто еще не может сказать, когда он будет ликвидирован.Автор романа — известный латышский прозаик, работающий в детективном жанре.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.