Том 28. Математика жизни. Численные модели в биологии и экологии - [4]
Тьюринг первым попытался решить биологические задачи с помощью компьютера, став одним из пионеров вычислительной биоматематики. Таким образом, его исследования придали этой дисциплине более прикладной характер, сблизив ее с привычными биологическими исследованиями в лаборатории. Биологи и другие ученые под влиянием работ Тьюринга также начали изучать жизнь с математической точки зрения. Подобные исследования проводились в разные годы XX века; проводятся они и сейчас. Кроме того, Тьюринг открыл новую область математической биологии, предложив первую математическую теорию морфогенеза. В одной из своих работ для анализа формы растений он использовал числа Фибоначчи.
Последовательность Фибоначчи 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т. д. образуется по следующему правилу: если принять первое число Фибоначчи, a>1, равным 0, второе число, a>2, равным 1, то каждое последующее число будет определяться как сумма двух предыдущих. Иными словами, а>n = а>n-1 + а>n-2. Любопытно, что числа Фибоначчи описывают количество лепестков цветов, расположение чешуек шишек и листьев растений.
Число спиралей на этой шишке в каждом направлении (8 и 13 соответственно) выражается последовательными числами Фибоначчи.
Эта особенность растений получила название филлотаксиса Фибоначчи. Так, числа Фибоначчи описывают расположение листьев растений, при котором их освещенность будет оптимальной. Представьте, что лист соперничает с соседними за доступ к солнечному свету. Каким будет оптимальное расположение листьев, обеспечивающее наибольшую освещенность каждого листа? Ответ дает последовательность Фибоначчи.
Продолжив исследования, Тьюринг совершил свое самое знаменитое открытие в этой области — он создал математическую модель «реакция — диффузия». Свои идеи ученый изложил в статье «Химическая основа морфогенеза», опубликованной в престижном научном журнале Лондонского королевского общества в 1952 году. Тьюринг был математиком, а не биологом, поэтому он попытался объяснить интересовавшее его явление с помощью дифференциальных уравнений. Он задался вопросом: каким образом в однородной ткани клеток, в зачаточном состоянии очень похожих друг на друга, например клеток кожи позвоночных, образуются полоски или пятна? С биологической точки зрения эти полоски или пятна — проявление различий между пигментными и непигментными клетками. Как следствие, полоски на шкуре зебры будут результатом нарушения изначального единообразия зародышевых клеток кожи.
Тьюринга интересовал биологический механизм, ведущий к появлению подобных узоров. Ученый предполагал, что полученный узор представляет собой нестабильное состояние, поскольку стабильным состоянием является единообразие зародышевых клеток без характерного узора. С помощью компьютера Ferranti Mark I Тьюринг провел ряд экспериментов по моделированию и доказал, что полученный узор на коже зависит от значений параметров математической модели.
Полоски на шкуре зебры — один из примеров, описываемых уравнениями «реакция — диффузия» Тьюринга.
Параметр математической модели — это значение, соответствующее какому-либо свойству, которое нельзя оценить напрямую, в ходе наблюдений. Тьюринг выявил несколько закономерностей, очень похожих на те, что описывают распределение щупалец гидры или расположение лепестков цветка. Предположив, что клетки имеют круглую форму, Тьюринг смоделировал многоклеточный зародыш — бластулу.
Бластула — один из этапов развития зародыша, на котором уже можно заметить появление узоров. Тьюринг изучил зародыши амфибий и ежей, которые сегодня благодаря своим особым свойствам широко используются в качестве моделей при изучении морфогенеза. Ученый предположил, что узоры образуются в результате процессов реакции — диффузии. Согласно его гипотезе, в зародышевой ткани, то есть в группе клеток, сгруппированных на плоскости, будут присутствовать пигментные клетки, продуцирующие вещество морфоген. Как только молекулы этого загадочного вещества распространятся в результате диффузии по зародышевой ткани, они вступают между собой в реакцию. Распределение продуктов этой химической реакции определяет так называемое поле концентраций — отпечаток, согласно которому и формируется узор зародышевых клеток. Следовательно, полоски, пятна и любые другие узоры, которые мы можем увидеть на шкуре животных, есть не более чем реплики поля концентраций. Мы не будем рассматривать знаменитые уравнения реакции — диффузии Тьюринга во всех подробностях, а только приведем их:
Эти выражения объясняют, как с течением времени изменяется объем или концентрация двух веществ, предложенных Тьюрингом, которые он назвал морфогеном-активатором (М>А) и морфогеном-ингибитором (М>1). Как мы уже отмечали, эти два вещества производятся только пигментными клетками. В свою очередь, f(М>А, М>1) и g(М>А, М>1) — две функции, обозначающие реакцию между активатором и ингибитором, а выражения
и указывают, как эти два класса морфогенов распространяются по ткани. Так, когда морфогены высвобождаются пигментными клетками, начинается процесс их диффузии, подобный диффузии песчинок сахара в стакане с водой. По Тьюрингу, морфоген-активатор стимулирует воспроизводство себя самого и морфогена-ингибитора. Еще одна любопытная особенность этой реакции заключается в том, что морфоген-ингибитор распространяется на большее расстояние, чем морфоген-активатор. Расстояния, на которые распространяются морфогены, зависят отАлану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.