Том 28. Математика жизни. Численные модели в биологии и экологии - [33]
Подобным подходом к экологии мы во многом обязаны Говарду Одуму, который в 1950-е годы впервые применил для описания экосистем схемы, напоминающие схемы электрических цепей, которые сегодня лежат в основе компьютерного моделирования. Также важным вкладом Одума в науку стало объединение экологии и теории систем.
Первые математические экологические модели описывали динамику популяций. Авторы этих моделей стремились описать изменение численности популяции и ее возрастное распределение в результате взаимодействия с окружающей средой. Эти исследования берут начало в XVIII веке, когда Томас Мальтус составил модель экспоненциального роста населения, а позднее, в 1938 году, Пьер Франсуа Ферхюльст представил логистическую модель роста.
Модель, созданная на основе схем Говарда Одума. Его инновационная методология легла в основу нового способа изучения экосистем.
В 1920-е годы Вито Вольтерра и Альфред Джеймс Лотка описали две модели, которые стали настоящими столпами математической экологии. Это были модель межвидовой конкуренции и модель «хищник — жертва». Обе имели похожую структуру, однако в первой предполагалось, что рост популяций описывается логистическим уравнением, а во второй рассматривался экспоненциальный рост. Примерно двадцать лет спустя, в 1940-е годы, Патрик Лесли представил матрицу Лесли — модель структуры популяции, в которой он объединил динамику роста популяции и демографию.
В то время как в основе моделей Мальтуса, Ферхюльста и Лотки — Вольтерры лежали дифференциальные уравнения, заслуга Лесли состояла в том, что он показал применимость математических моделей, использующих матрицы.
Матричная алгебра оказалась достойным инструментом экологического и компьютерного моделирования. Матричные модели получили название BIDE (от английского Births, Immigrants, Deaths, Emigrants — «рождение, иммиграция, смерть, эмиграция»). Очевидное преимущество операций с матрицами заключалось в том, что их могли выполнять компьютеры.
В модели BIDE популяция в общем виде описывается следующим выражением:
N>t+1 = N>t+ B + I — D — E.
* * *
ЭЛЕМЕНТАРНАЯ МОДЕЛЬ BIDE
Опишем одну из простейших экологических моделей. Допустим, что мы хотим изучить популяцию оленей, для которой известна численность самок N>J не достигших репродуктивного возраста, и число выживших самок в этой группе S>J на временном интервале от t до t + 1, а также численность взрослых самок N>A и число выживших самок в этой группе S>A за этот же промежуток времени. Если обозначить через Р>J число выживших молодых самок в пересчете на каждую самку репродуктивного возраста, то численность популяции будет изменяться по следующей модели:
На основе этого класса элементарных моделей можно составить более сложные, к примеру модель с матрицей Лесли.
* * *
Численность популяции в момент времени t + 1 в будущем определяется ее численностью в настоящий момент времени t и совокупностью всех факторов, которые ведут к ее росту или сокращению: В — число родившихся в период времени с t по t + 1, t — число иммигрантов, присоединившихся к популяции в период времени с t по t + 1, D — число умерших в период с t по t + 1 и Е — число эмигрантов, покинувших популяцию в период с t по t + 1.
Модель Лотки — Вольтерры: волки и зайцы
В течение всей Первой мировой войны, с 1914 по 1918 год, на севере Адриатического моря была приостановлена рыбная ловля. После войны улов рыбы вернулся на прежний уровень. Именно тогда, в 1920-е годы, итальянский биолог Умберто д’Анкона провел количественный анализ различных видов рыбы, продававшейся на рынках Венеции, Риеки и Триеста. Ученый обнаружил, что на рынках продавалось намного больше хищных рыб, чем рыб, которые были естественной добычей для хищников. Д'Анкона испытывал романтические чувства к дочери знаменитого математика того времени Вито Вольтерры и предложил ему провести математический анализ ситуации и объяснить различие в численности хищников и жертв. Именно так его будущий тесть в 1926 году предложил систему дифференциальных уравнений. Похожую систему годом ранее, совершенно независимо от Вольтерры, разработал американский физик и химик Альфред Джеймс Лотка. Результаты их работ стали известны как уравнения Лотки — Вольтерры.
Система дифференциальных уравнений, описывающая взаимодействие «хищник — жертва», стала одной из первых и наиболее известных моделей математической биологии. Она применяется в экологии при восстановлении численности вида в регионе или при определении численности рыб, которые будут сосуществовать с хищниками, например с акулами, в океанариуме. Также модель применима в других областях: в иммунологии при изучении взаимодействия вируса или раковых клеток с иммунной системой, в паразитологии — при изучении взаимосвязи между паразитом и хозяином, в экономике — при изучении соотношения количества потребителей и ресурсов и так далее.
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.