Том 28. Математика жизни. Численные модели в биологии и экологии - [33]

Шрифт
Интервал

. В математической модели каждое звено пищевой цепи характеризуется численностью организмов, описывается циркуляция энергии и другие аспекты. Как правило, экосистемы достаточно сложны ввиду большого числа населяющих их видов и множества связей между ними, поэтому экологи стремятся упростить модели. К примеру, экосистемы грибы и бактерии могут быть объединены в рамках единой подсистемы детритофагов. Кроме того, модель экосистемы объединяется с другими моделями и становится частью итоговой общей модели. Одной из составляющих итоговой модели является окружающая среда, будь то суша, океан и т. д. Ну а для построения моделей широко используется компьютерное моделирование.

Подобным подходом к экологии мы во многом обязаны Говарду Одуму, который в 1950-е годы впервые применил для описания экосистем схемы, напоминающие схемы электрических цепей, которые сегодня лежат в основе компьютерного моделирования. Также важным вкладом Одума в науку стало объединение экологии и теории систем.

Первые математические экологические модели описывали динамику популяций. Авторы этих моделей стремились описать изменение численности популяции и ее возрастное распределение в результате взаимодействия с окружающей средой. Эти исследования берут начало в XVIII веке, когда Томас Мальтус составил модель экспоненциального роста населения, а позднее, в 1938 году, Пьер Франсуа Ферхюльст представил логистическую модель роста.



Модель, созданная на основе схем Говарда Одума. Его инновационная методология легла в основу нового способа изучения экосистем.


В 1920-е годы Вито Вольтерра и Альфред Джеймс Лотка описали две модели, которые стали настоящими столпами математической экологии. Это были модель межвидовой конкуренции и модель «хищник — жертва». Обе имели похожую структуру, однако в первой предполагалось, что рост популяций описывается логистическим уравнением, а во второй рассматривался экспоненциальный рост. Примерно двадцать лет спустя, в 1940-е годы, Патрик Лесли представил матрицу Лесли — модель структуры популяции, в которой он объединил динамику роста популяции и демографию.

В то время как в основе моделей Мальтуса, Ферхюльста и Лотки — Вольтерры лежали дифференциальные уравнения, заслуга Лесли состояла в том, что он показал применимость математических моделей, использующих матрицы.

Матричная алгебра оказалась достойным инструментом экологического и компьютерного моделирования. Матричные модели получили название BIDE (от английского Births, Immigrants, Deaths, Emigrants — «рождение, иммиграция, смерть, эмиграция»). Очевидное преимущество операций с матрицами заключалось в том, что их могли выполнять компьютеры.

В модели BIDE популяция в общем виде описывается следующим выражением:

N>t+1N>t+ B + I — D — E.

* * *

ЭЛЕМЕНТАРНАЯ МОДЕЛЬ BIDE

Опишем одну из простейших экологических моделей. Допустим, что мы хотим изучить популяцию оленей, для которой известна численность самок N>J не достигших репродуктивного возраста, и число выживших самок в этой группе S>J на временном интервале от t до t + 1, а также численность взрослых самок N>A  и число выживших самок в этой группе S>A за этот же промежуток времени. Если обозначить через Р>J число выживших молодых самок в пересчете на каждую самку репродуктивного возраста, то численность популяции будет изменяться по следующей модели:


На основе этого класса элементарных моделей можно составить более сложные, к примеру модель с матрицей Лесли.

* * *

Численность популяции в момент времени t + 1 в будущем определяется ее численностью в настоящий момент времени t и совокупностью всех факторов, которые ведут к ее росту или сокращению: В — число родившихся в период времени с t по + 1, t — число иммигрантов, присоединившихся к популяции в период времени с по t + 1, — число умерших в период с t по + 1 и Е — число эмигрантов, покинувших популяцию в период с по + 1.


Модель Лотки — Вольтерры: волки и зайцы

В течение всей Первой мировой войны, с 1914 по 1918 год, на севере Адриатического моря была приостановлена рыбная ловля. После войны улов рыбы вернулся на прежний уровень. Именно тогда, в 1920-е годы, итальянский биолог Умберто д’Анкона провел количественный анализ различных видов рыбы, продававшейся на рынках Венеции, Риеки и Триеста. Ученый обнаружил, что на рынках продавалось намного больше хищных рыб, чем рыб, которые были естественной добычей для хищников. Д'Анкона испытывал романтические чувства к дочери знаменитого математика того времени Вито Вольтерры и предложил ему провести математический анализ ситуации и объяснить различие в численности хищников и жертв. Именно так его будущий тесть в 1926 году предложил систему дифференциальных уравнений. Похожую систему годом ранее, совершенно независимо от Вольтерры, разработал американский физик и химик Альфред Джеймс Лотка. Результаты их работ стали известны как уравнения Лотки — Вольтерры.

Система дифференциальных уравнений, описывающая взаимодействие «хищник — жертва», стала одной из первых и наиболее известных моделей математической биологии. Она применяется в экологии при восстановлении численности вида в регионе или при определении численности рыб, которые будут сосуществовать с хищниками, например с акулами, в океанариуме. Также модель применима в других областях: в иммунологии при изучении взаимодействия вируса или раковых клеток с иммунной системой, в паразитологии — при изучении взаимосвязи между паразитом и хозяином, в экономике — при изучении соотношения количества потребителей и ресурсов и так далее.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.