Том 28. Математика жизни. Численные модели в биологии и экологии - [31]

Шрифт
Интервал

Таким образом, мы смоделировали обучение — один из самых удивительных процессов, протекающих в мозгу человека и животных, и выразили биологическое значение этого процесса с помощью операции над векторами. Математическая модель обучения была представлена Мак-Каллоком и Питтсом в 1946 году. Впоследствии она стала основой для моделирования различных аспектов работы мозга с использованием элементарных нейронных сетей.


Векторное, или внешнее, произведение

Еще одной операцией умножения векторов является векторное произведение, которое также называется внешним произведением.

Объясним вычисление векторного произведения на примере тех же векторов, для которых мы рассчитывали скалярное произведение.

Даны вектор а>-> и вектор Ь>->. Их векторное произведение равно:


После необходимых действий результирующий вектор будет равен:


Обратите внимание, что мы обозначаем векторное произведение знаком X, чтобы отличить его от скалярного произведения. Более того, если скалярное произведение представляет собой число, то векторное произведение — это вектор. Еще одно различие заключается в том, что скалярное произведение а>->t·Ь>-> обозначает проекцию вектор-строки а>-> на вектор-столбец Ь>->, а векторное произведение а>-> х Ь>->t представляет собой вектор (обозначим его c>->), перпендикулярный плоскости, определяемой двумя исходными векторами.



Векторное произведение векторов а>->х Ь>->


Модуль нового вектора c>-> будет схож со скалярным произведением, однако его значение будет равно |а>->|·|Ь>->|·sin α. Модуль векторного произведения векторов будет равен площади построенного на них параллелограмма. Направление вектора c>-> определяется по известному правилу буравчика, или правилу правой руки.

В биологии векторное произведение используется при изучении молекул, играющих основную роль в поддержании жизни, к примеру таких белков, как миоглобин. Сюда же относится самая знаменитая из всех известных сегодня молекул — молекула ДНК. При их изучении биофизики используют классические понятия физики и измеряют величины, рассчитываемые как векторное произведение, к примеру дипольный момент — электромагнитную силу, действующую на частицу в магнитном поле.


Модель памяти животных и человека

Существует еще одна поистине замечательная операция — тензорное произведение, которое применяется в математических моделях нейронных сетей, описывающих память животных и человека. Представим, что вектор v>-> состоит только из единиц и нулей, то есть является двоичным вектором. Каждый из его элементов обозначает наличие (1) или отсутствие (0) той или иной характеристики некоторого объекта.

Если мы вычислим тензорное произведение v>->и v>->, то получим следующую матрицу:


Обратите внимание, какие действия мы выполнили, чтобы получить эту матрицу:


Несмотря на кажущуюся сложность, эта операция на самом деле проста. Мы получили матрицу памяти, обладающую свойством запоминать предмет, показанный нейронной сети. Она позволяет смоделировать на компьютере способность людей и животных запоминать различные объекты. Так как элементы матрицы обозначают связи между нейронами, в модели предполагается, что каждый нейрон связан со всеми другими нейронами. Как следствие, все элементы главной диагонали матрицы должны быть равны 0. Исправим значения элементов главной диагонали, равные 1:


Существуют математические методы, позволяющие восстановить объект, представленный матрицей, и смоделировать процесс вспоминания и распознавания образов.

* * *

СЕТЬ ХОПФИЛДА

Механизм обучения, запоминания букв, цифр и сигналов светофора можно смоделировать с помощью нейронной сети. Модель памяти, определяемая с помощью тензорного произведения, известна как сеть Хопфилда. Она названа в честь исследователя Джона Джозефа Хопфилда, который представил эту модель в 1980-е годы. Сегодня модель Хопфилда используется в самых разных цифровых системах: не только для решения множества физических задач, но и в электронике, и при обработке изображений.



Модель памяти Хопфилда из восьми нейронов. Каждый нейрон в этой модели связан со всеми остальными.

* * *

Решение систем уравнений. Эксперимент энтомолога

Обратные матрицы применяются также для решения систем уравнений. Рассмотрим систему из трех уравнений с тремя неизвестными:

а>11х + а>12y + а>13z = b>1

а>21х + а>22y + а>23z = b>2

а>31х + а>32y + а>33z = b>3

Матрицы также используются для представления систем уравнений:


Это равенство равносильно следующему:

А·X = В.

Если мы найдем матрицу, обратную А, то есть А>-1, а затем умножим обе части равенства на эту обратную матрицу:

А>-1·А·Х = А>-1· В,

то, поскольку произведение А·А>-1 равно единичной матрице Е, имеем:

Е·Х = А>-1·В.

Кроме того, так как произведение любой матрицы на единичную матрицу Е равно исходной матрице, получим:

Х = А>->1·В.

Таким образом, решить систему уравнений, то есть определить значения х, у, z, можно с помощью обратной матрицы коэффициентов: нужно умножить ее на вектор-столбец свободных членов системы уравнений.

Продемонстрируем этот метод на примере под названием «эксперимент энтомолога». Допустим, что мы отправились в поле в поисках определенного вида насекомых и разместили ловушки там, где эти насекомые водятся. Спустя несколько дней мы вернулись к ловушкам, чтобы собрать насекомых. В лаборатории мы установили, что в ловушках оказалось 180 насекомых. Мы разделили их на молодых (обозначим их через х) и взрослых (


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.