Том 28. Математика жизни. Численные модели в биологии и экологии - [30]

Шрифт
Интервал

(исключительно из формальных соображений дополним это обозначение буквой t, что означает «транспонированный») и вектор-столбец Ь>->. Скалярное произведение этих двух векторов будет равно:


Выполнив указанные арифметические действия, получим итоговый результат, равный 4. Скалярное произведение, которое также называют внутренним произведением векторов, — это число, указывающее длину проекции вектора-строки а>-> на вектор Ь>->. Если известны длины обоих векторов, |а>->| и |Ь>->|, а также угол α между ними, то скалярное произведение векторов а>->·Ь>-> будет равно |а>->|·|Ь>->|·cos α. Этот результат представляет для нас особый интерес, если учесть, что |а>->|·cos α — это значение проекции вектора а>-> на вектор Ь>->.



Скалярное произведение векторов а>->·Ь>->

* * *

ЧЕМУ РАВНА РАБОТА, КОГДА МЫ ТЯНЕМ ИЛИ ТОЛКАЕМ ГРУЗ?

Вычисление работы, которую мы совершаем, когда тянем груз по земле, — еще один пример, когда используется скалярное произведение векторов. Согласно законам классической механики, работа определяется как скалярное произведение действующей на предмет силы F>-> и перемещения D>->. Иными словами, если векторы F>-> и D>-> расположены под углом друг к другу, работа А будет равна |F|·|D|·cos α. Обратите внимание, что при неизменной силе F>-> работа будет изменяться в зависимости от угла между векторами. В самом деле, если векторы F>-> и D>-> имеют одинаковое направление, угол между ними равен 0, и работа будет максимальной, так как косинус 0 равен 1. Нетрудно видеть, что при α > 0° работа будет меньше максимума.

* * *

Обучение. Пример с распознаванием звуков

С начала XX века благодаря работам Сантьяго Рамон-и-Кахаля нейробиологи знают, что обучение с точки зрения биологии заключается в видоизменении синапсов. Обучение животного или человека можно смоделировать, изменив одно или несколько значений связей, представленных вектором-строкой а. В результате этих изменений, то есть в результате обучения, меняется значение или состояние выходного нейрона, а следовательно, реакция субъекта на некоторый стимул.

Допустим, что свойства некоторого повторяющегося звука представлены следующим вектором:


Единицы обозначают присутствие определенных характеристик звука, нули — отсутствие. Допустим, что первая характеристика обозначает громкость звука: если громкость превышает 30 децибел, эта характеристика равна 1, в противном случае — 0. Громкость в 30 децибел соответствует шуму на полупустой улице. В качестве примера звука, громкость которого меньше этого значения, приведем шелест страниц книги. Вторая характеристика описывает частоту звука: она равна 1, если частота звука заключена в интервале 100—5000 герц (именно в этом интервале лежат частоты всех звуков или шумов, доставляющих неудобство), в противном случае — 0. Третья характеристика, которую описывает вектор, — это мощность звука. Ее значение равно 1, если мощность звука превышает 1 ватт (это сопоставимо с пневматическим молотом или реактивным самолетом), и 0, если мощность звука меньше 1 ватта (источником такого звука может быть автомобиль, пианино и т. д.). Теперь рассмотрим связи между тремя входными нейронами (их функция заключается в том, чтобы считывать вектор с данными о звуке, воспринимаемом органами слуха) и выходными:


Если мы вычислим скалярное произведение этих двух векторов, то увидим, что состояние выходного нейрона равно 1,0, так как 0,8·1 + 1·0 + 1·0,2.

Предположим, что мы улучшили нейрон выходного слоя, чтобы сделать модель более реалистичной. Будем считать, что нейрон реагирует активно, если его выходное значение превышает определенную пороговую величину, выбранную произвольным образом. Обозначим эту пороговую величину через 0 и примем ее значение равным 0,6. Если скалярное произведение больше либо равно 0, нейрон станет активным (обозначим это состояние через 1). Если скалярное произведение меньше 0, нейрон останется в состоянии покоя (обозначим это состояние через 0). В нашем примере скалярное произведение равно 1, что превышает пороговое значение 0,6. Следовательно, нейрон возбужден и принимает состояние 1.



Пример нейронной сети до обучения.


Но что произойдет, если человек будет сталкиваться с разными звуками? Что происходит, когда человек или животное обучается? В этом случае значения связей меняются. Допустим, в результате обучения значение одной из связей изменилось:


Это означает, что важность этой связи снизилась с 0,8 до 0,3 и громкость звука в децибелах стала менее важной. Если вычислить скалярное произведение, то есть простимулировать нейронную сеть тем же стимулом, то после обучения состояние выходного нейрона будет равно 0,3 — нетрудно видеть, что 0,3·1 + 1·0 + 1·0,2. Если теперь мы сравним состояние эфферентного нейрона с пороговым значением 0, равным 0,6, то увидим, что нейрон находится в состоянии покоя, то есть 0.



Пример нейронной сети после обучения.


Обратите внимание, что обучение можно интерпретировать как поворот вектора-строки связей а>-> относительно Ь>->. Чем больше проекция вектора связей а>-> на вектор стимула Ь>->, тем сильнее реакция выходного нейрона.

Реакция нейрона максимальна, когда вектор связей имеет то же направление, что и стимул. Что произойдет, если эти векторы будут перпендикулярны? Реакция выходного нейрона будет равна 0, так как cos 90° = 0.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.