Том 28. Математика жизни. Численные модели в биологии и экологии - [13]

Шрифт
Интервал

>2 (говоря математическим языком, у' = 3x>2). Необходимо определить у. Эта задача допускает несколько возможных решений (они называются первообразными), но если нам также известно значение функции в некоторой точке, например у(0) = 0, то решение будет единственным. Чтобы найти у, нужно вычислить интеграл
.

Сначала вынесем число 3 за знак интеграла: 3·

 Затем, поскольку мы имеем дело с табличным интегралом, достаточно вспомнить следующую формулу:


где С — константа интегрирования. В нашем случае функция у выглядит так:


В нашем случае С = 0, так как у(0) = 0. Упростив выражение, получим искомую функцию: у =t>3. Задача была успешно решена стандартными методами интегрального исчисления.

Что произойдет, если производная у не будет напрямую выражена в виде f(t), нужно найти? Именно так выглядят дифференциальные уравнения, в которых значение у' связано со значением у. Производная функции по времени обозначается у' либо dy/dt. Эти обозначения эквивалентны. В простейших случаях дифференциальное уравнение имеет следующий вид:


Расскажем немного подробнее об элементах дифференциального уравнения. Что означает у', или dy/dt? Производная выражает уровень изменений, скорость или ритм изменения системы. Напомним, что одной из характеристик динамических систем является зависимость их состояния от взаимодействия между их элементами, при этом любое изменение произвольного элемента влияет на общее состояние системы у. Иными словами, если известно состояние системы в момент времени t, например у(t), и мы подставим это значение в дифференциальное уравнение, то определим степень изменений системы — она будет характеризоваться значением у'. Заметьте, что дифференциальные уравнения в силу своих свойств наиболее удобны для построения математических моделей динамических систем и поэтому играют важную роль в математической биологии — с их помощью были успешно смоделированы многие биологические и экологические явления, о которых мы расскажем в этой главе.

Но как найти у в дифференциальном уравнении? Эта задача в общем виде решается не так просто, как в предыдущем примере, когда, зная производную функции у' = Зх>2, мы смогли вычислить саму функцию. В дифференциальных уравнениях наряду с у' фигурируют и другие члены.

Если сравнить дифференциальное уравнение с шоколадным пасхальным яйцом, внутри которого находится игрушка, то решение уравнения будет равносильно тому, чтобы извлечь игрушку путем последовательных действий. К примеру, сначала нужно снять с яйца обертку, затем съесть шоколад, и только тогда вы увидите игрушку или, в случае с дифференциальным уравнением, найдете искомую функцию у. Следовательно, решить дифференциальное уравнение означает найти функцию у. Если выполнить с этим уравнением различные действия, вы получите и, если возможно, примените аналитические методы решения. На одном из этапов решения мы используем интегральное исчисление, однако не столь явно, как в предыдущем примере.

Пример решения представлен в следующей главе для уравнения модели Мальтуса, которое играет основную роль в демографии и при изучении динамики популяций. Если методы интегрального исчисления заведут нас в тупик, мы также сможем найти приближенное решение с помощью компьютера. Приближенное решение означает, что мы выберем желаемую точность результата и применим алгоритм, который позволит найти решение с точностью, превышающей указанную. Теория численного анализа гарантирует, что определенный алгоритм позволяет найти решение с наперед заданной (или более высокой) точностью.

Наиболее известные численные алгоритмы решения дифференциальных уравнений — это метод Эйлера и метод Рунге — Кутты. Эти методы используют не только математики, но и экологи, а также сотрудники фармакологических лабораторий. Метод Рунге — Кутты более известен и обеспечивает прекрасное соотношение между временем расчетов на компьютере и точностью результата. Метод Эйлера проще, но менее точен.


Дифференциальное уравнение Парка юрского периода

В 1950-е годы Уиллард Либби разработал интересный метод определения примерного возраста ископаемых. В основе метода Либби лежало измерение содержания радиоактивного изотопа углерода С-14 в изучаемом объекте, например, в ископаемом или в Туринской плащанице.



Американский химик Уиллард Либби (1908–1980) на обложке журнала Time.


С-14 — это изотоп углерода, концентрация которого в атмосфере Земли постоянна. Живые организмы в течение жизни накапливают углерод С-14, получая его с дыханием и при питании другими живыми существами. Каким бы путем С-14 ни попадал в организм, его содержание также будет неизменным. После смерти накопление С-14 прекращается, и его концентрация в тканях начинает постепенно снижаться.

Чтобы получить формулу для определения возраста объектов, используем уравнение роста из модели Мальтуса. Обозначим через у содержание С-14 в определенный момент времени t, через у>0  — содержание С-14 в ископаемом. Кроме того, искомая формула будет включать r — так называемую константу распада, известную для всех изотопов: у = y>0e>rt.

Так как известно, что период полураспада С-14 составляет 5600 лет, предыдущее выражение примет вид:


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.