Том 28. Математика жизни. Численные модели в биологии и экологии - [14]
После ряда преобразований получим у = у>0е>-0,00012378t. Выразив время t из этого выражения, найдем формулу, с помощью которой палеонтологи и археологи определяют возраст ископаемых и археологических находок:
Это выражение можно использовать в случаях, когда возраст анализируемого объекта не превышает 50 тысяч лет.
К примеру, мы обнаружили кость доисторического животного, содержащую 1/100 изотопа С-14. Чему равен возраст находки? По условию задачи, с будет равно 100. Подставив это значение в исходное выражение, имеем:
Можно сделать вывод: возраст кости составляет примерно 37 тысяч лет.
В 1798 году Томас Роберт Мальтус опубликовал книгу «Эссе о росте народонаселения». Согласно его гипотезе, в какой-то момент численность населения Земли будет расти в геометрической прогрессии, то есть экспоненциально. При этом объем продовольственных и любых других ресурсов возрастает в арифметической прогрессии, то есть линейно. Так, численность населения описывается последовательностью 2 (2>1), 4 (2>2), 8 (2>3), 16 (2>4), 32 (2>5), 64 (2>6) и т. д., количество продовольственных ресурсов — 2, 3, 4, 3, 6 и т. д. Следовательно, наступит момент, когда высокая рождаемость, особенно среди рабочего класса, приведет к недостатку продовольствия (отметим, что марксисты считали теории Мальтуса нападками на рабочий класс).
Англиканский священник Томас Роберт Мальтус (1766–1834). Справа представлены две модели роста: экспоненциальная (1) и линейная (2).
Допустим, что мы применили модель Мальтуса, в частности у' = r·у, к некоторой популяции животных или микроорганизмов. В конечном итоге в этой модели скорость роста населения у пропорциональна численности населения у. Таким образом, применив математические методы, можно преобразовать исходное дифференциальное уравнение, как показано ниже. Во-первых, нужно записать уравнение в следующем виде: dy/dt = r·у, где r — параметр, отражающий рост населения с постоянной скоростью, которая не меняется в последующих поколениях. Этот параметр называется коэффициентом роста населения.
Затем перенесем dt в правую часть так, что dy = r·y·dt. Это уравнение словно подсказывает, что нужно сгруппировать в одной части все члены, связанные с у. Следовательно, перенесем у в левую часть. Имеем dy/у = r·dt.
Наконец, чтобы решить уравнение, нужно взять интеграл от обеих его частей, как показано далее:
На этом этапе у читателя может создаться впечатление, что мы не решаем задачу, а только усложняем рассуждения. Внимательно рассмотрим выражение. В правой его части записан простейший табличный интеграл. Так как r — константа, ее можно вынести за знак интеграла. Имеем:
Напомним, что
В левой части также записан табличный интеграл. Обратите внимание, что, поскольку dy записано в числителе, у — в знаменателе, интеграл будет равен логарифму у, а именно:
Поэтому
ln(y) = r·t + C.
Если мы избавимся от логарифма и сгруппируем члены выражения, то найдем решение дифференциального уравнения у' = r·у. Для этого подставим в выражение величину, обозначающую исходное число бактерий (ранее мы обозначили его через у>0). Определим функцию у:
y = y>0e>rt
В 1838 году математик Пьер Франсуа Ферхюльст видоизменил модель Мальтуса с учетом того, что размеры окружающей среды ограничены, поэтому должно существовать некоторое максимальное значение численности населения k, известное как поддерживающая емкость среды. Ферхюльст получил следующее дифференциальное уравнение: у' = r·y(k — у).
Бельгийский математик Пьер Франсуа Ферхюльст (1804–1849), один из величайших специалистов по теории чисел первой половины XIX века.
Решением уравнения Ферхюльста является знаменитое логистическое уравнение, которое описывает не только рост населения, но и распространение эпидемий и рост социальных сетей в интернете:
Логистическое уравнение применимо для анализа S-образного роста — экспоненциального, но ограниченного количеством ресурсов, будь то физическое пространство, продовольствие, емкость рынка мобильной связи или число пользователей социальной сети. Экспоненциальный рост является неограниченным, то есть утопичным, возможным только в мире с неисчерпаемыми ресурсами. В логистической же модели рассматривается реальный мир, к примеру планета Земля, ресурсы которой, что очевидно, ограничены.
Любопытно отметить, что эти модели были предложены в XIX веке, в разгар промышленной революции. В эту эпоху жили такие ученые, как Чарльз Дарвин, создатель теории эволюции путем естественного отбора, и Чарльз Бэббидж, изобретатель аналитической и разностной машин — прообразов современных компьютеров. Эти любопытные совпадения предвосхитили плодотворный союз математики и компьютерных технологий, который сыграл в XX веке определяющую роль в изучении жизни.
Биотехнология — это раздел биологии, с помощью которого методы генной инженерии и выращивания клеточных культур находят широкое применение в сельском хозяйстве, фармакологии, медицине и диетологии. Основной инструмент биотехнологов — хемостат, резервуар или биореактор, в котором посредством культивирования клеток вырабатываются полезные вещества.
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.