Том 28. Математика жизни. Численные модели в биологии и экологии - [14]

Шрифт
Интервал


После ряда преобразований получим у = у>0е>-0,00012378t. Выразив время t из этого выражения, найдем формулу, с помощью которой палеонтологи и археологи определяют возраст ископаемых и археологических находок:


Это выражение можно использовать в случаях, когда возраст анализируемого объекта не превышает 50 тысяч лет.

К примеру, мы обнаружили кость доисторического животного, содержащую 1/100 изотопа С-14. Чему равен возраст находки? По условию задачи, с будет равно 100. Подставив это значение в исходное выражение, имеем:


Можно сделать вывод: возраст кости составляет примерно 37 тысяч лет.


Мальтус, Ферхюльст и рост населения

В 1798 году Томас Роберт Мальтус опубликовал книгу «Эссе о росте народонаселения». Согласно его гипотезе, в какой-то момент численность населения Земли будет расти в геометрической прогрессии, то есть экспоненциально. При этом объем продовольственных и любых других ресурсов возрастает в арифметической прогрессии, то есть линейно. Так, численность населения описывается последовательностью 2 (2>1), 4 (2>2), 8 (2>3), 16 (2>4), 32 (2>5), 64 (2>6) и т. д., количество продовольственных ресурсов — 2, 3, 4, 3, 6 и т. д. Следовательно, наступит момент, когда высокая рождаемость, особенно среди рабочего класса, приведет к недостатку продовольствия (отметим, что марксисты считали теории Мальтуса нападками на рабочий класс).



Англиканский священник Томас Роберт Мальтус (1766–1834). Справа представлены две модели роста: экспоненциальная (1) и линейная (2).


Допустим, что мы применили модель Мальтуса, в частности у' = r·у, к некоторой популяции животных или микроорганизмов. В конечном итоге в этой модели скорость роста населения у пропорциональна численности населения у. Таким образом, применив математические методы, можно преобразовать исходное дифференциальное уравнение, как показано ниже. Во-первых, нужно записать уравнение в следующем виде: dy/dt = r·у, где r — параметр, отражающий рост населения с постоянной скоростью, которая не меняется в последующих поколениях. Этот параметр называется коэффициентом роста населения.

Затем перенесем dt в правую часть так, что dy = r·y·dt. Это уравнение словно подсказывает, что нужно сгруппировать в одной части все члены, связанные с у. Следовательно, перенесем у в левую часть. Имеем dy/у = r·dt.

Наконец, чтобы решить уравнение, нужно взять интеграл от обеих его частей, как показано далее:


На этом этапе у читателя может создаться впечатление, что мы не решаем задачу, а только усложняем рассуждения. Внимательно рассмотрим выражение. В правой его части записан простейший табличный интеграл. Так как r — константа, ее можно вынести за знак интеграла. Имеем:


Напомним, что

Правая часть равенства будет выглядеть так:


В левой части также записан табличный интеграл. Обратите внимание, что, поскольку dy записано в числителе, у — в знаменателе, интеграл будет равен логарифму у, а именно:


Поэтому

ln(y) = r·t + C.

Если мы избавимся от логарифма и сгруппируем члены выражения, то найдем решение дифференциального уравнения у'r·у. Для этого подставим в выражение величину, обозначающую исходное число бактерий (ранее мы обозначили его через у>0). Определим функцию у:

y = y>0e>rt

В 1838 году математик Пьер Франсуа Ферхюльст видоизменил модель Мальтуса с учетом того, что размеры окружающей среды ограничены, поэтому должно существовать некоторое максимальное значение численности населения k, известное как поддерживающая емкость среды. Ферхюльст получил следующее дифференциальное уравнение: у' r·y(k — у).



Бельгийский математик Пьер Франсуа Ферхюльст (1804–1849), один из величайших специалистов по теории чисел первой половины XIX века.


Решением уравнения Ферхюльста является знаменитое логистическое уравнение, которое описывает не только рост населения, но и распространение эпидемий и рост социальных сетей в интернете:


Логистическое уравнение применимо для анализа S-образного роста — экспоненциального, но ограниченного количеством ресурсов, будь то физическое пространство, продовольствие, емкость рынка мобильной связи или число пользователей социальной сети. Экспоненциальный рост является неограниченным, то есть утопичным, возможным только в мире с неисчерпаемыми ресурсами. В логистической же модели рассматривается реальный мир, к примеру планета Земля, ресурсы которой, что очевидно, ограничены.

Любопытно отметить, что эти модели были предложены в XIX веке, в разгар промышленной революции. В эту эпоху жили такие ученые, как Чарльз Дарвин, создатель теории эволюции путем естественного отбора, и Чарльз Бэббидж, изобретатель аналитической и разностной машин — прообразов современных компьютеров. Эти любопытные совпадения предвосхитили плодотворный союз математики и компьютерных технологий, который сыграл в XX веке определяющую роль в изучении жизни.


Дифференциальные уравнения в биотехнологии

Биотехнология — это раздел биологии, с помощью которого методы генной инженерии и выращивания клеточных культур находят широкое применение в сельском хозяйстве, фармакологии, медицине и диетологии. Основной инструмент биотехнологов — хемостат, резервуар или биореактор, в котором посредством культивирования клеток вырабатываются полезные вещества.


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.