Том 28. Математика жизни. Численные модели в биологии и экологии - [12]
Динамика эксперимента аналогична той, что описывается уравнениями модели «хищник — жертва» Лотки — Вольтерры. Если акул немного, численность рыб быстро увеличивается. С увеличением числа рыб численность акул также возрастет, что ведет к постепенному снижению числа рыб. В зависимости от численности акул и их расположения на тороидальной решетке рыбы могут полностью исчезнуть. В этом случае популяция акул в отсутствие пищи, то есть рыб, также быстро вымрет. Какими должны быть условия сосуществования акул и рыб, необходимые для сохранения обеих популяций? Приглашаем читателя поиграть с моделью Ва-Тор и самостоятельно определить наиболее подходящие параметры.
Глава 2
Жизнь — изменчивое явление
Кажется, что живые существа постоянно решают самые разные задачи, в том числе и для того, чтобы поддерживать такое удивительное и сложное явление, как жизнь. Постоянная беготня муравьев, переносящих пропитание и различные материалы, движение красных кровяных телец, образование стай птиц, беспрерывная передача сигналов между нейронами мозга, преобразование одних веществ в другие в ходе клеточного метаболизма, сердцебиение, этапы развития эмбриона с момента зачатия до момента рождения, изменения, происходящие с головастиком, — лишь некоторые примеры, демонстрирующие динамическое поведение живых существ. Как следствие, живые организмы представляют собой подвижные системы, состояние и поведение которых со временем меняются. Если бы мы могли увидеть все, что происходит внутри простой клетки на протяжении одной секунды, мы бы поразились количеству преобразований за это время. Системы, обладающие подобными свойствами, называются динамическими.
Жизнь — результат множества динамических явлений, благодаря которым становится возможным ее поддержание и развитие. На иллюстрации — жизненный цикл лягушки, изображенный на немецкой гравюре конца XIX столетия.
Для изучения живых существ и экосистем могут использоваться те же теории и методы, что и для изучения любых других динамических систем. Так, биологические системы образованы множеством элементов, будь то муравьи, нейроны, вещества, участвующие в метаболизме, или птицы, причем их состояние или поведение (идет ли речь о муравейнике, мозге или стае птиц) со временем изменяется.
Еще одно важное свойство биологических систем заключается в том, что их состояние или поведение является результатом взаимодействия между их элементами.
К примеру, состояние муравейника в момент времени t будет результатом взаимодействия между отдельными муравьями в рассматриваемый период времени. В силу этого свойства кажется очевидным, что математическая модель должна включать наблюдаемые характеристики, репрезентативные для состояния или поведения изучаемой системы. В случае с муравейником это будет численность рабочих муравьев, муравьев-солдат и других членов колонии, в примере с метаболизмом — объемы веществ А, В, С и т. д.
Для математика наблюдаемые характеристики системы, значение которых можно получить экспериментально, являются переменными модели и обозначаются х, у, …, z. Если известны значения этих переменных в разные моменты времени х(t), у(t)…, z(t), то известно, каким будет состояние или поведение системы (муравейника, мозга, метаболизма или стаи птиц) в момент времени t. Обратите внимание, что в динамической системе время t является независимой, или входной, переменной. Выходной переменной, в свою очередь, будет состояние системы, которое определяется множеством зависимых переменных х(t), у(t)…, z(t). Математическая модель позволяет описать состояние системы в определенный момент времени t, а также с ее помощью предсказать будущее состояние системы для значения t, достаточно далеко отстоящего от текущего момента, — именно это происходит при составлении прогнозов погоды или прогнозировании уровня заболеваемости во время эпидемии. В последние десятилетия стало актуальным прогнозирование уровня заболеваемости гриппом, коровьим бешенством или СПИДом.
* * *
ПРОГНОЗИРОВАНИЕ И МОДЕЛИРОВАНИЕ
Прогнозирование стало неотъемлемой частью жизни общества в XX–XXI веках. Определяющее влияние на будущее людей оказывает возможность контролировать изменения: социальные, экономические, эпидемические и т. д. С момента изобретения компьютера прогнозирование будущего с помощью математического моделирования чрезвычайно широко используется в науке и технике. Моделирование охватывает все сферы человеческой деятельности, от изучения экологических (рост численности населения, экосистемы, климатические модели и т. д.) и физиологических систем (обмен веществ, клетки, сердце, мозг, мышцы) в биологии и медицине до изучения социальных систем (опросы общественного мнения, анализ безработицы, состояние рынков и т. д.) в политологии и экономике.
Компьютерное моделирование поведения белков, связанных с болезнью Паркинсона.
* * *
Одна из классических математических задач звучит так. Предположим, что мы хотим найти неизвестную функцию у, для которой известна ее производная у'. Допустим, производная у' неизвестной функции у равна З
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.