Том 26. Мечта об идеальной карте. Картография и математика - [39]
Два важных элемента локального анализа поверхности — это плоскость, касающаяся поверхности в точке р, и нормальный вектор поверхности N(p), выходящий из точки р, перпендикулярный касательной плоскости.
Для этого рассмотрим плоскость, касающуюся поверхности S в точке р. Это плоскость, ближайшая к поверхности в указанной точке. Вектор, перпендикулярный касательной плоскости, исходящий из точки р, называется нормальным вектором (см. рисунок). Чтобы определить кривизну поверхности в данной точке, нужно изучить, как изменяется положение касательной плоскости (или нормального вектора) в окрестности этой точки. В математике этот процесс называется дифференцированием. Результатом операции будет математический объект под названием дифференциальная форма (мы не будем приводить здесь точного определения, так как интересующийся читатель найдет его в любой книге по дифференциальной геометрии), который содержит всю информацию о кривизне поверхности. На основе дифференциальной формы определяются две различные кривизны: так называемая кривизна Гаусса К и средняя кривизна Н.
Примеры поверхностей, на которых оттенками серого обозначены различные значения кривизны Гаусса и средней кривизны. Плоскость (К = Н = 0), цилиндр с радиусом основания r (К = 0; Н = 1/2r), сфера радиуса r (К = 1/r2, Н = -1/r), псевдосфера (К = -1; наибольшая средняя кривизна ближе к краю псевдосферы, на рисунке оттенками серого представлены значения средней кривизны), тор (на внешней части поверхности кривизна положительная, на внутренней — отрицательная; средняя кривизна для разных участков отличается, оттенками серого на рисунке представлены значения кривизны Гаусса); катеноид (Н = 0; оттенками серого представлены значения кривизны Гаусса), седловая поверхность (оттенками серого представлены значения кривизны Гаусса).
Есть и другой, возможно, более геометрический способ определить эти понятия: для данной точки р поверхности S, для которой мы хотим рассчитать кривизну, рассмотрим нормальный вектор N(р) и семейство плоскостей П(р)» проходящих через р и содержащих N(р). Для каждой плоскости семейства П(р) рассмотрим ее линию пересечения с поверхностью S. Этой линией будет кривая, проходящая через р. Измерим кривизну этой кривой в данной точке. Полученное значение и будет мерой кривизны кривой в точке. Таким образом мы получим ряд значений кривизны поверхности в точке р и сможем рассчитать кривизну поверхности. На множестве этих значений кривизны найдем максимальное значение k>1 и минимальное значение k>2 — так называемые главные кривизны, то есть максимальные и минимальные значения «направленной» кривизны поверхности в точке р. На их основе можно рассчитать кривизну Гаусса и среднюю кривизну:
Цилиндр и два основных его направления, кривизна которых равна k>1 = 1/r и k>2 = 0. Следовательно, К = 0, Н = 1/2.
Великий математик Карл Фридрих Гаусс в работе «Общие исследования кривых поверхностей» (1827) показал, что, вопреки определению, величина, впоследствии получившая название кривизны Гаусса, зависит исключительно от метрических свойств поверхности, то есть выступает неотъемлемым элементом геометрии этой поверхности. Это утверждение называется Theorema Egregium — основная теорема теории поверхностей. Как следствие, кривизна Гаусса описывает внутреннюю кривизну поверхности. Эту кривизну может ощутить наблюдатель, находящийся на плоскости и не выходящий за ее пределы. Следовательно, если две поверхности изометричны, то есть если существует изометрическое преобразование, позволяющее преобразовать одну из этих поверхностей в другую, то кривизна Гаусса должна быть одинаковой в точках, соответствующих по изометрии. Это утверждение справедливо и для части поверхности, то есть оно выполняется, если изометрическое преобразование можно определить только для какой-то части поверхности.
Таким образом, решение картографической задачи можно рассматривать как частный случай Teorema Egregium. Так как сфера имеет постоянную положительную кривизну Гаусса (для сферы единичного радиуса кривизна Гаусса равна 1; сфера искривлена во всех точках и вдоль всех направлений одинаково), а плоскость имеет нулевую кривизну, не существует изометрического преобразования (в том числе локального), позволяющего преобразовать сферу в плоскость.
Более того, в дифференциальной геометрии, которая носит более общий характер, чем математическая картография (в дифференциальной геометрии рассматриваются произвольные поверхности), в силу Teorema Egregium кривизна Гаусса препятствует построению изометрии двух поверхностей. Если использовать термины картографии, для построения карты одной поверхности на другой необходимо, чтобы кривизна Гаусса для обеих поверхностей была одинаковой. Ключевой вопрос, связанный с теоремой Гаусса, таков: является ли полученный нами результат не только необходимым, но и достаточным? Иными словами, будут ли изометричными, как минимум локально, две поверхности с одинаковой кривизной Гаусса? Российский математик немецкого происхождения Фердинанд Миндинг (1806–1885), который провел обширные исследования в области дифференциальной геометрии поверхностей, доказал, что если две поверхности имеют одинаковую кривизну Гаусса и она одинакова для всей поверхности, то для этих поверхностей существует локальная изометрия. Так как кривизна Гаусса для цилиндра (или конуса) постоянна, а кривизна Гаусса для плоскости равна нулю, эти поверхности локально изометричны. Однако если кривизна Гаусса не является постоянной, утверждение, доказанное Миндингом, не выполняется.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.