Том 26. Мечта об идеальной карте. Картография и математика - [41]
Развертка глобуса Мартина Вальдземюллера (1507).
* * *
Глобусы широко используются в картографии, географии, мореходном деле, геодезии, океанографии, климатологии, сейсмографии и других науках. Они позволяют получить реальное представление о том, как выглядит Земля, какую форму она имеет, как ее континенты расположены относительно друг друга. Поэтому важно, чтобы во всех школах и во всех домах был хотя бы один глобус, позволяющий увидеть, как на самом деле выглядит наша планета. Кроме того, благодаря особой конструкции подставки глобуса, мы можем наблюдать за вращением Земли: та часть глобуса, которую мы видим, будет соответствовать той части планеты, где сейчас день, невидимая часть глобуса — той части, где сейчас ночь.
Хотя в теории глобус — это идеальная модель Земли, ввиду некоторых непреодолимых ограничений иногда его использование невозможно (даже если сам глобус сконструирован безупречно).
1. Глобусы хрупкие и объемные, поэтому их сложно хранить, перевозить, а иногда с ними неудобно работать.
2. Производство глобусов очень дорого (особенно это касается моделей большого размера), при этом они недостаточно удобны для изучения деталей.
3. На них сложно выполнять измерения и оценивать величины углов.
4. Глобус позволяет рассматривать только одно полушарие одновременно.
5. Изготовить печатную или электронную репродукцию части глобуса нельзя.
В завершение этой главы мы расскажем еще об одной группе проекций, обладающих общими метрическими свойствами. Как мы уже говорили, каждый картограф мечтает о карте с постоянным масштабом (коэффициентом уменьшения), единственным искажением которой будет равномерное изменение размера. Однако мы доказали, что построить такую карту невозможно: масштаб любого изображения Земли на плоскости не является постоянным и отличается в разных точках и направлениях, поскольку любая картографическая проекция неизбежно вносит искажения. Тем не менее существуют проекции, в которых некоторое семейство кривых будет иметь постоянный масштаб, а их длина будет пропорциональна длине этих кривых, начерченных на поверхности Земли (такие кривые называются стандартными). Проекции, обладающие этим свойством, называются равнопромежуточными. Рассмотрим три примера проекций этой группы: цилиндрическую, азимутальную и коническую.
Цилиндрическая равнопромежуточная проекция
С математической точки зрения эта проекция тривиальна. В простейшем случае, когда линия касания проходит по экватору, широта и долгота точки интерпретируются как ее декартовы координаты (см. следующий рисунок). В равновеликой цилиндрической проекции Ламберта участки земной поверхности, расположенные на высоких широтах, словно сжимаются, в проекции Меркатора — расширяются, а в цилиндрической равнопромежуточной проекции все параллели равноудалены друг от друга. Вдоль меридианов и экватора масштаб остается постоянным (в этом случае сетка меридианов и параллелей будет квадратной: такая проекция носит название plate саrréе). Кроме того, искажения отсутствуют вдоль меридианов и любых двух параллелей, равноудаленных от экватора (такая проекция называется равнопрямоугольной). Авторство этой проекции обычно приписывают Эратосфену, хотя Птолемей указывает, что ее создал Марин Тирский примерно в 100 году н. э. Начиная с этого времени цилиндрическая равнопромежуточная проекция благодаря простоте построения использовалась весьма часто, особенно в навигации. Она очень удобна для составления карт городов и любых малых участков земной поверхности.
Эта проекция используется в простых картах мира и в картах регионов, не содержащих много географических данных. Однако для составления более или менее подробных карт эта проекция в XX веке практически не применяется. Геологическая служба США и другие агентства обычно используют ее для индексных карт, на которых схематично указываются различные карты, включенные в сборник или атлас, и страница, на которой они находятся.
Карта, выполненная в проекции plate саrréе. Эта проекция — частный случай равнопрямоугольной проекции, в которой стандартной параллелью является экватор.
Азимутальная равнопромежуточная проекция
Это четвертая классическая азимутальная проекция. В отличие от трех вышеупомянутых она не является геометрической. Как и в других азимутальных проекциях, геодезические линии, то есть большие круги, проходящие через точку касания сферы и плоскости, изображаются на плоскости прямыми, проходящими через центр карты, при этом угол между геодезическими линиями сохраняется. Эта проекция обладает частным свойством: ее масштаб не изменяется вдоль прямых, проходящих через центр карты (это стандартные линии равнопромежуточной проекции). Иными словами, в этой проекции сохраняются расстояния от любых точек до центра карты. Кроме того, азимутальная равнопромежуточная проекция позволяет представить на одной карте поверхность всего земного шара, однако при выходе за пределы большого круга — границы полушария, проходящей через точку касания сферы и плоскости, — искажения становятся очень велики. Эта карта имеет одну особую точку, которая становится «центром мира». Все расстояния до этой точки сохраняются.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.