Том 26. Мечта об идеальной карте. Картография и математика - [37]

Шрифт
Интервал

Однако после изучения трех проекций стало понятно: чтобы проекция была изометрической и подходила для составления идеальной карты, сохранения только одного из метрических свойств (площадей, углов или формы геодезических линий) недостаточно.


Равноугольные равновеликие проекции

Итак, наша первая попытка построить идеальную карту завершилась неудачей. Тогда рассмотрим следующий вопрос: достаточно ли сохранения двух из трех метрических свойств, чтобы проекция была изометрической?

Начнем с того, что рассмотрим проекцию сферы на плоскость, сохраняющую углы и площади, и попытаемся определить, будет ли эта проекция изометрической. Для этого используем результаты, изложенные в предыдущих главах. В них мы рассмотрели искажения, вносимые проекциями, которые оставляют площади и величины углов неизменными. Как вы знаете из главы 5, если проекция является конформной (равноугольной), искажения в направлении меридианов μ равны искажению в направлении параллелей λ:

μ = λ

С другой стороны, в этой же главе мы показали, что для равновеликих проекций величина искажения вдоль меридианов обратна величине искажения вдоль параллелей, что обеспечивает сохранение площадей:

μ = 1/λ

С учетом обоих равенств имеем:

μ = λ = 1

Иными словами, если проекция будет одновременно равновеликой и конформной, в ней не будет наблюдаться никаких искажений: ни вдоль меридианов, ни вдоль параллелей, ни в каком-либо другом направлении. Следовательно, эта проекция будет изометрической. Читатель может спросить: как быть с масштабом? Напомним, что мы рассматриваем сферическую модель Земли, следовательно, линейное изменение размеров никак не влияет на решение задачи.

Эврика! Точную карту Земли можно построить с помощью проекции, которая сохраняла бы одновременно величины углов и площади. Создание такой проекции нетривиально, ведь она должна сохранять все метрические свойства: геодезические линии, формы, длины кривых и расстояния.


Существует ли правильная карта Земли?

Прежде чем начать поиски равновеликой конформной проекции, на основе которой можно составить идеальную карту Земли, продолжим двигаться намеченным путем и рассмотрим проекции, сохраняющие два других метрических свойства, например величины углов и геодезические линии.

Аналогично треугольнику на плоскости, который определяется как область, ограниченная тремя попарно пересекающимися прямыми, точки пересечения которых не лежат на одной прямой, сферический треугольник определяется как часть сферы, ограниченной тремя дугами попарно пересекающихся больших кругов, при этом точки пересечения не лежат на одном большом круге. Так как рассматриваемые нами проекции сохраняют геодезические линии, то проекцией сферического треугольника будет треугольник на плоскости. Поскольку эти проекции конформны, они сохраняют величины углов треугольников и их сумму. Из классической геометрии известно, что сумма углов треугольника равна π (180°). Чему будет равна сумма углов сферического треугольника? Будет ли она также равна π (180°), как и следовало ожидать?

Рассмотрим конкретный пример. Представим сферический треугольник, образованный дугой меридиана, заключенной между Северным полюсом и экватором, и другой, похожей, дугой, отстоящей на угол π/2 (90°) от первой, как



Сферический треугольник, три угла которого равны 90°, следовательно, их сумма равна 270°.


Сумма углов этого сферического треугольника будет равна 3π/2 (270°), а не π (180°), как мы ожидали. Следовательно, не существует проекций сферы на плоскость, которые сохраняли бы величины углов и геодезические линии одновременно. Из этого утверждения следует: не существует изометрических проекций сферы на плоскость, то есть

ИДЕАЛЬНОЙ КАРТЫ НЕ СУЩЕСТВУЕТ.

Более того, это утверждение касается не только всей сферы, но и любого ее участка. Локальную изометрию сферы на плоскости построить невозможно, следовательно, точную карту даже малой части земной поверхности построить также нельзя.

Чтобы доказать это, рассмотрим сумму углов произвольного сферического треугольника. Ее значение находится на интервале между π и 3π (не включая границы). Так как каждый сферический угол меньше π, очевидно, что сумма трех углов будет меньше 3π. Мы можем неограниченно приближаться к этому значению: достаточно рассмотреть треугольник, две вершины которого лежат на экваторе, а третья находится вблизи экватора так, что сферический треугольник покрывает почти все полушарие. Можно рассмотреть еще один предельный случай, когда две вершины треугольника лежат на экваторе, а третья совпадает с Северным полюсом так, что дуги меридианов будут образовывать сколь угодно малый угол. Сумма углов такого треугольника будет близка к π. Можно доказать, что для любого сферического треугольника выполняется равенство:

Площадь сферического треугольника = R>2  (сумма углов треугольника — π),

где R — радиус сферы. Так как сумма углов сферического треугольника произвольной формы и размера всегда больше π, не существует проекций участков сферы на плоскость, в которых сохранялись бы углы и геодезические линии. Следовательно, локальные изометрии также не существуют. Ожидания, которые мы возлагали на построение равновеликой конформной проекции, оказались напрасными.


Еще от автора Рауль Ибаньес
Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Рекомендуем почитать
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.