Том 26. Мечта об идеальной карте. Картография и математика - [35]
Фотографии, выполненные в стереографической проекции широкоугольным объективом типа «рыбий глаз», стали популярными в фотоискусстве
>(источник: Александр Дюре-Лутц).
Конформные проекции особенно удобны, когда важны углы или направления (румбы), например в морской и воздушной навигации. Помимо уже упомянутых ортодром, в навигации важную роль играют локсодромы (кривые, пересекающие меридианы под постоянным углом), так как при прокладке курса вдоль локсодромы нужно всего лишь держаться одного и того же румба, указываемого, например, стрелкой компаса. По этой причине сохраняется актуальность проекции Меркатора, в которой локсодромы изображаются прямыми, следовательно, их можно легко начертить на карте. Так как эти проекции сохраняют величины углов, они также применяются в геодезии, метеорологии (для изображения, например, направлений ветров или перпендикулярных им изобар) и океанографии. Они также находят применение при анализе распространения волн, например сейсмических или радиоволн, которое, как известно, происходит радиально: не будем забывать, что в конформных проекциях окружности изображаются как окружности или прямые. Наконец, как показала американский биоматематик Моника Хёрдал из Университета штата Флорида, конформные проекции важно использовать при составлении карт мозга.
Квинкунциальная проекция Пирса — это конформная проекция, определяемая с помощью методов комплексного анализа на основе стереографической проекции. В квинкунциальной проекции Пирса сфера принимает форму квадрата.
Наконец, так как конформные проекции сохраняют формы на локальном уровне, они удобны для составления карт небольших участков земли.
Чаще всего используются следующие конформные проекции: уже рассмотренная нами стереографическая проекция, проекция Меркатора, равноугольная коническая проекция Ламберта и биполярная косая равноугольная коническая проекция. Существуют и другие конформные проекции, например проекция Лагранжа, представленная Ламбертом в 1772 году, проекции Августа и Айзенлора, представленные около 1870 года, квинкунциальная проекция Пирса, в которой Земля изображена в виде квадрата (1879), и квадратная проекция Гойю (1887).
Важнейшая конформная проекция после стереографической, о которой мы только что рассказали, и проекции Меркатора, о которой мы поговорим в главе 9, — это равноугольная коническая проекция Ламберта, которая, как следует из названия, относится к третьей группе картографических проекций после азимутальных и цилиндрических. В геометрических (а следовательно, и алгоритмических) конических проекциях сферическая модель Земли проецируется на касающийся ее или пересекающий ее конус, который затем разворачивается на плоскости. Чтобы развернуть конус на плоскости, его нужно разрезать вдоль меридиана. Конус, подобно цилиндру, используется потому, что его можно развернуть на плоскости так, что его метрические свойства останутся неизменными. Кроме того, окружности сечения конуса сферой являются стандартными линиями, то есть линиями, изображаемыми на карте в реальном масштабе. Иными словами, масштаб карты вдоль этих линий является линейным.
Изображение, спроецированное на поверхность конуса и развернутое на плоскости.
Все прямые конические проекции, то есть проекции, в которых вершина конуса лежит на оси «север — юг», а линия касания конуса и сферы проходит вдоль параллели, обладают следующими свойствами.
1. Меридианы изображаются прямыми линиями, исходящими из одной точки, и разделены интервалами, имеющими одинаковые угловые размеры. Угловое расстояние между меридианами уменьшается в фиксированном масштабе.
2. Параллели отображаются в виде дуг концентрических окружностей, пересекающих меридианы под прямым углом. Искажения вдоль каждой параллели постоянны.
Эти свойства означают, что карта в конической проекции имеет форму кольцевого сектора, а положение меридианов и параллелей задается угловым расстоянием между меридианами и расстоянием между параллелями. Эти параметры, а также стандартная параллель (параллели) и определяют внешний вид карты.
В конических проекциях сетка меридианов и параллелей имеет характерную форму. Примером конической проекции является равновеликая коническая проекция Альберса (1805).
Искажения, вносимые коническими проекциями, вблизи стандартной параллели (или параллелей) невелики и возрастают по мере приближения к полюсам. В силу этого конические проекции обычно используются для карт стран, регионов и территорий с умеренным климатом, в то время как азимутальные и цилиндрические проекции, как правило, применяются при построении карт полярных и экваториальных территорий соответственно. Так, конические проекции подходят для изображения участков земли, заключенных между двумя не слишком удаленными друг от друга меридианами: например для карт Испании, Франции, Монголии или Аляски. В этой же проекции можно составлять карты более широких областей, простирающихся в направлении с востока на запад, например карты России, Европы или США.
Кроме стандартных, или полярных, конических проекций, также существуют экваториальные и косые конические проекции. Если не соблюдать условия построения конических проекций, мы получим так называемые псевдоконические (на них меридианы изображаются кривыми) и поликонические (где параллели не являются концентрическими окружностями) проекции.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.