Том 26. Мечта об идеальной карте. Картография и математика - [38]
Хотя в разные годы картографы неизменно терпели неудачу в попытках построить идеальную карту Земли, они не могли доказать, что эта задача не имеет решения. Доказательство принадлежит швейцарскому математику Леонарду Эйлеру, который изложил приведенные выше рассуждения в работе «О представлении сферической поверхности на плоскости«(De repraesentatione superficiei sphaericae super piano), представленной в Петербургской академии наук в 1775 году и опубликованной в 1778 году в «Журнале Императорской Санкт-Петербургской академии наук».
* * *
ФОРМУЛА СУММЫ УГЛОВ СФЕРИЧЕСКОГО ТРЕУГОЛЬНИКА
Пусть дана сфера радиуса R. Ее часть, заключенная между двумя большими кругами (сферический двуугольник), которые пересекаются под углом α радиан, имеет площадь, равную площади поверхности сферы, взятой α/2π раз, то есть
(α/2π)·(4πR>2).
Обозначим вершины сферического треугольника через А, В, С, углы — через α, β и γ. Если мы рассмотрим большие круги, на которых лежат стороны АВ и АС, по приведенной выше формуле получим:
t + a = 2αR>2
Аналогично имеем:
t + b = 2βR>2 и t + c = 2γR>2
Сложив эти три равенства, имеем:
3t + a + b + c = 2R>2(α + β + γ).
Получается, что t + а + Ь + с равно площади поверхности полусферы (заметим, что для каждой вершины, например А, существуют два равных двуугольника с углами α; каждый из них состоит из двух областей площадью t и а). Как следствие,
2t + 2πR>2 = 2R>2(α + β + γ).
Упростив равенство, получим
t = R>2(α + β + γ — π).
* * *
ЛЕОНАРД ЭЙЛЕР (1707–1783)
Эйлер считается самым плодовитым математиком всех времен. Он опубликовал свыше 500 книг и статей, а с учетом трудов, напечатанных посмертно (до 1911 года), их число достигает 866. В 1911 году было начато издание полного собрания его сочинений, которое, как планировалось, должно было составить 90 томов.
Эйлер родился в Базеле. Его отец, пастор-кальвинист, хотел, чтобы сын изучал богословие, но Эйлер остановил свой выбор на математике. В 19 лет он опубликовал первый научный труд, посвященный оптимальному расположению мачт и парусов на корабле, при этом он ни разу не видел парусника своими глазами. С 1727 по 1740 год Эйлер жил в Санкт-Петербурге и работал в Петербургской академии наук. По прибытии Эйлер обнаружил, что император совершенно не интересовался науками, и, чтобы заработать на жизнь, в течение трех лет занимался делами русского флота. Он женился на Катарине Гзель, которая родила ему 13 детей. Эйлер говорил, что совершил многие открытия, держа кого-нибудь из детей на руках. В эти же годы ученый ослеп на правый глаз.
В 1741–1766 годах он работал в Берлинской академии наук. Из-за экономического кризиса в первые годы жизни в Берлине Эйлер зарабатывал тем, что учил математике членов знатных семейств. Отношения с королем Фридрихом II не складывались — монарх дал ученому прозвище Математик-циклоп и поручал ему не связанные с наукой задачи: в частности, Эйлеру пришлось возглавить работы по выравниванию Финов-канала, руководить соляной шахтой и решать различные финансовые вопросы. Когда Эйлер вернулся в Санкт-Петербург, Екатерина II отнеслась к нему совершенно иначе, и между ними сложились теплые личные отношения. В конце жизни Эйлер полностью ослеп, однако почти половина его работ была написана именно в этот период.
* * *
Повторим, ИДЕАЛЬНОЙ КАРТЫ НЕ СУЩЕСТВУЕТ. Любая карта Земли или какой-нибудь ее части будет в некотором смысле неточной. Вывод Эйлера подтверждают следующие эксперименты. Возьмем пластиковый шар и разрежем его пополам, после чего попытаемся развернуть одну из половин на плоскости. Станет очевидно, что при этом поверхность шара либо растянется, либо сморщится, в итоге расстояния между различными точками поверхности изменятся. Даже если перед этим мы сделаем несколько радиальных разрезов, это не решит проблему.
Аналогичная трудность поджидает нас и в обратном случае: если мы, например, захотим завернуть апельсин в лист бумаги, на ней образуется множество складок. Поэтому при использовании карт, выполненных в различных проекциях и охватывающих различные участки Земли (в том числе весь земной шар), важно выделить те, которые максимально точно удовлетворяют конкретным требованиям. Если вам понадобится карта, важно не то, насколько она известна, как она называется и рекомендует ли ее какое-нибудь международное агентство. Делайте свой выбор в зависимости от того, сохраняет ли карта необходимые вам метрические свойства.
Задачу о составлении точной карты Земли картографы стремились решить во все времена. Следуя путем Эйлера, мы доказали, что эта задача не имеет решения. Но если на минуту забыть об этом, можно задаться вопросом: почему построить такую карту невозможно, почему нельзя преобразовать сферу в плоскость с сохранением метрических свойств? Разумеется, если читатель вспомнит наш эксперимент с пластиковым шаром, то придет к выводу: сфера — искривленная поверхность, а плоскость — нет. Однако этот вывод верен лишь отчасти. Цилиндр и конус — также искривленные поверхности, но тем не менее их можно развернуть на плоскости, сохранив при этом метрические свойства. В чем же разница между сферой, цилиндром и конусом? Быть может, их кривизна чем-то отличается или проблема кривизны вообще не так уж и важна? Действительно, не все поверхности искривлены одинаково. Понятие кривизны, применимое к точке поверхности, показывает, насколько далека данная поверхность от плоскости в рассматриваемой точке. Однако кривизну необходимо как-то измерить, выразить количественно.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.