Том 26. Мечта об идеальной карте. Картография и математика - [2]
Следовательно, контуры стран на карте также очень сильно искажены. Наконец, зададимся вопросом: сохраняются ли на картах румбы, направления и углы? Углы между меридианами и параллелями равны 90°, как и на нашей карте. Но если мы посмотрим на карту на следующей странице, то увидим, что это не так — углы не сохраняются. Эта карта выполнена в одной из классических проекций, которая называется ортографической, и показывает Землю так, как будто мы смотрим на нее из бесконечно удаленной точки.
Следовательно, карты не обладают ни одним из ожидаемых свойств: они не сохраняют расстояния, кратчайшие пути, площади и углы. Может быть, нам не хватает каких-то знаний? Так, существует целое множество картографических проекций: кроме упомянутых проекции Меркатора и ортографической проекции, используются равновеликая цилиндрическая проекция Ламберта, равновеликая коническая проекция Альберса, проекция Моллвейде, ортографическая проекция Галла — Петерса, проекция Eckert IV, центральная, стереографическая, равноугольная коническая проекция Ламберта, биполярная косая равноугольная коническая проекция, цилиндрическая равнопромежуточная, азимутальная равнопромежуточная, тройная проекция Винкеля, проекция Ван дер Гринтена, UTM, проекция Бонне, проекции Eckert I–IV, гомолосинусоидальная проекция Гуда, Хаммера, Вернера, Бризмейстера, равновеликая цилиндрическая проекция Бермана, проекция Робинсона и многие другие. Картограф Джон Снайдер в своей книге «Как Земля стала плоской» (Flattening the Earth) описывает свыше 300 картографических проекций. Возникает вопрос: почему существует столько карт? Насколько они точны? Какая — точнее всех? Как нарисовать точную карту Земли? И наконец, какую карту можно считать точной?
В этой книге мы постараемся ответить на эти вопросы, а также подробно рассказать о картах, которые мы видим каждый день. При изучении карт не обойтись без дифференциальной геометрии, которая входит в курсы картографии для таких специальностей, как география, судовождение, океанология и другие. Однако мы стремимся избежать специальных терминов и рассказать о картах с интуитивно понятной, «геометрической» точки зрения, поэтому будем использовать только методы классической геометрии (в частности, геометрии Евклида и тригонометрии). Приближенные равенства, которые мы будем приводить во многих рассуждениях, исчезают при переходе к пределу, однако в этом случае мы применим лишь самые основы дифференциального и интегрального исчисления, относящиеся к дифференциальной геометрии.
Глава 1
Форма Земли
«Во-первых, — сказал Сократ, — если Земля кругла и находится посреди неба, она не нуждается ни в воздухе, ни в иной какой-либо подобной силе, которая удерживала бы ее от падения…
Далее, я уверился, что Земля очень велика и что мы, обитающие от Фасиса до Геракловых Столпов, занимаем лишь малую ее частицу; мы теснимся вокруг нашего моря, словно муравьи или лягушки вокруг болота.
Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи и пестро расписанный разными цветами…»[1]
Платон, «Федон, или О бессмертии души» (IV в. до н. э.)
Перед тем как приступить к составлению или изучению карт планеты, на которой мы живем и которая поэтому представляет для нас наибольший интерес, следует изучить ее форму и размеры. Так мы научимся определять положение точек на ее поверхности и отметим некоторые геометрические особенности Земли, которые интересовали ученых начиная с глубокой древности. Уже Клавдий Птолемей в «Географии» писал: «…Первое, что следует изучить [для того, чтобы создать карту мира] — это форма, размер и положение Земли относительно ее окрестностей [неба] так, чтобы мы смогли говорить об известной ее части, сколь велика бы она ни была […]. Эти деяния принадлежат к числу благороднейших и прекраснейших умственных занятий — узнаванию посредством математики… [природы] Земли по ее изображению…»
Именно в этом состоит цель геодезии. Слово «геодезия» происходит от греческого «гео» («земля») и «даио» («делю»), оно означает «деление Земли». Геодезия — это наука, изучающая форму и размеры планеты, ее поле тяготения и траекторию движения. В геодезии нельзя обойтись без геометрии — само сходство этих слов говорит о важной связи между ними: «геометрия» происходит от греческого «гео» («земля») и «метриа» («измерять»), то есть означает «измерение Земли».
* * *
КЛАВДИЙ ПТОЛЕМЕЙ (ОК. 90-170 ГОДЫ)
О жизни этого астронома, математика и географа известно немногое. Мы знаем, что он был римским гражданином греческого или египетского происхождения, жил и работал в Александрии. Он был автором двух трактатов, оказавших огромное влияние на европейскую и мусульманскую науку: «Альмагеста» (от арабского «Великое построение») и «Географии». В «Альмагесте», в котором прослеживается влияние Гиппарха, Птолемей собрал и расширил знания греков об астрономии, а также описал соответствующие математические методы. В этом трактате он подробно изложил математическую теорию, описывающую движение Солнца, Луны и планет.
Его модель мира была геоцентрической и описывала движение сферических небесных тел с помощью эпициклов, сочетавших в себе несколько видов кругового движения. Кроме того, в «Альмагесте» приводился каталог звезд. Более популярным языком Птолемей изложил свои идеи в труде «Планетные гипотезы». Его «География» представляет собой сборник знаний о географии мира того времени. В трактате описаны способы создания карт мира («ойкумены») и римских провинций с помощью координатной сетки. Карты Птолемея (дошедшие до нас благодаря репродукциям XV века) обладали важным достоинством: они были созданы с применением геометрических проекций. Тем не менее эти карты были очень неточными, ведь в те годы знания о землях за пределами Римской империи и даже о некоторых римских провинциях были ошибочными. Кроме того, размеры Земли, вычисленные Птолемеем, были намного меньше реальных. В своих книгах «Аналемма» и «Планисфера» Птолемей объясняет соответственно ортографическую и стереографическую проекции. Также ему принадлежат трактаты «Гармоника» — о музыке, «Оптика» и «Четверокнижие», посвященные астрологии.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.