Том 26. Мечта об идеальной карте. Картография и математика - [3]
Восстановленный вариант одной из карт мира, приведенных в «Географии» Птолемея. Эта карта также дана в «Космографии» Йоханнеса Армсшейна и Николаса Германуса (1482).
* * *
Три первые главы этой книги посвящены изучению Земли, ее форм и размеров, географических координат и больших кругов.
Сегодня вопрос о том, какую форму имеет Земля, может показаться даже несколько оскорбительным: как все мы знаем, наша планета круглая, подобно мячу, и сплюснута у полюсов (то есть, говоря математическим языком, ее форма ближе к эллипсоиду). Также в школе нас учили: люди были убеждены в том, что земля плоская, пока Христофор Колумб не доказал современникам, что она имеет форму шара.
Спутниковые снимки Земли доказывают, что наша планета круглая, а не плоская.
В нашем сознании настолько укоренилась мысль о том, что Земля круглая, что мы и не думаем спорить с этим. Но каковы прямые доказательства того, что Земля на самом деле круглая? Одним из них могут служить многочисленные спутниковые снимки, на которых видно, что наша планета имеет форму шара. Но даже если отбросить маловероятную теорию заговора, согласно которой эти изображения — подделка, все же проверить подлинность спутниковых снимков мы не можем. Как писал древнегреческий философ Аристотель (384 год до н. э. — 322 год до н. э.) в своем трактате «О небе», нам нужны «явления, доступные ощущениям».
Многие народы, населявшие Землю еще примерно 2300 лет назад — египтяне, вавилоняне, китайцы и даже греки, — считали, что Земля совершенно плоская.
Первые описания формы Земли в Древней Греции принадлежат Гомеру (IX век до н. э.), собравшему воедино знания о географии и космологии своего времени. Греки считали, что Земля — это плоский диск, висящий в воздухе, на котором располагается известная в то время суша, окруженная великим океаном, и его воды переливаются через края Земли. Это представление о мире разделяли последователи ионийской школы философии, в частности Анаксимандр (ок. 610 года до н. э. — ок. 546 года до н. э.), ученик Фалеса Милетского, который был автором первой известной нам карты мира.
Реконструкция карты Гекатея, созданной на основе карты Анаксимандра. Это древнейшее из дошедших до нас изображений ойкумены — мира, известного древним.
* * *
ЗЕМЛЯ В КОСМОЛОГИЧЕСКИХ МИФАХ
Все древние народы (вавилоняне, египтяне, китайцы, греки, американские индейцы и другие) в своих мифах о происхождении мира представляли Землю более или менее плоской. По их верованиям, Земля покоилась в океане, висела в воздухе или находилась на спине огромного мифологического существа.
Для вавилонян Земля была плоским диском, который плавал на поверхности океана и был покрыт небесным сводом — металлической полусферой, на которой располагались звезды. Над небесным сводом находились высшие воды, которые иногда просачивались сквозь него, и тогда на Земле шел дождь. В африканских мифах Земля покоилась на змее, плавающей в океане.
Индусы считали, что Землю поддерживают четыре слона, стоящие на огромной черепахе, которая также плавает в океане. Египтяне и китайцы считали, что земля имеет прямоугольную форму и плавает в воде, а небесный свод покоится на двух горных цепях или четырех горах, находящихся в углах мира.
В мифах индейцев майя и других американских культурах мир изображался в виде плоского прямоугольного листа, над которым находилось небо, образованное тринадцатью наложенными друг на друга горизонтальными плоскостями. На вершине этой пирамидальной структуры восседало главное божество. Под землей находился подземный мир, состоявший из девяти горизонтальных слоев, расположенных в форме перевернутой пирамиды. Вертикально расположенные плоские миры, параллельные друг другу, описываются и в буддийской космологии.
* * *
Древнегреческому математику и философу Пифагору (ок. 570 года до н. э. — ок. 500 года до н. э.), пусть и не безоговорочно, приписывают авторство гипотезы о шарообразной форме Земли. Неизвестно, на чем была основана его гипотеза: на физических наблюдениях или философских рассуждениях (философы считали шар самой совершенной из фигур, следовательно, наша планета, населенная людьми и сотворенная богами, должна была иметь форму шара). Платон в своем диалоге «Федон, или О бессмертии души» также упоминает, что земля имеет форму шара. Но раньше всех эту гипотезу излагает Аристотель в трактате «О небе», приводя при этом некоторые физические и логические аргументы в ее пользу. Он же первым заговорил о радиусе Земли: «Все математики, которые пытаются вычислить размер окружности Земли, говорят, что он равен 400000 стадиев».
Впрочем, размеры земного шара мы обсудим в следующей главе.
Так как приведенные Аристотелем аргументы в пользу того, что Земля имеет форму шара, верны и сегодня, мы можем с их помощью ответить на вопрос, заданный в начале главы: каковы же прямые доказательства того, что Земля круглая? Посмотрев на небо, мы, подобно древним грекам, обнаружим первое доказательство этому: небесные тела — Солнце, Луна и планеты — имеют круглую форму. Тень, которую отбрасывает Земля на Луну во время лунного затмения, также круглая.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.