Том 26. Мечта об идеальной карте. Картография и математика - [14]
Чем больше радиус окружности r, тем меньше ее кривизна k.
В действительности геометры определили новую величину, которую можно назвать кривизной кривой на заданной поверхности. Это так называемая геодезическая кривизна, которая указывает степень кривизны кривой на поверхности, которой она принадлежит. В качестве окружающего пространства рассматривается именно эта поверхность, а не трехмерное пространство.
Геодезическая кривизна геодезических линий, в частности больших кругов сферы, равна нулю, что является обобщением кривизны прямой на плоскости.
Глава 4
В поисках правильной карты Земли
Примерно две тысячи лет назад для изображения круглой Земли на плоскости пришлось решить различные математические, философские и географические задачи, которые привлекли внимание многих изобретателей.
Разумеется, первые карты появились намного раньше.
Современная картография развивалась медленными темпами, так как исследование разных уголков Земли началось, по историческим меркам, сравнительно недавно.
Джон Снайдер «Как Земля стала плоской» (1993)
Картография — это наука, изучающая графическое изображение Земли и ее частей, а также других небесных тел. В картографии главным образом рассматриваются карты, а также рельефные модели и глобусы. В эру компьютеров и интернета карты и глобусы могут быть очень сложными, интерактивными, созданными с помощью новых способов изображения земной поверхности.
Карты выполняют две основные функции: они используются для хранения и представления полезной географической информации, а также помогают понять пространственные соотношения и осознать всю сложность мира, в котором мы живем.
Картография делится на три основные части. Первая — это сбор, анализ и обработка географической информации, которая затем используется при составлении карт. Источниками географической информации обычно служат: наблюдения в поле (традиционный источник информации на протяжении всей истории картографии, применяющийся до сих пор), данные аэрофотосъемки и космической съемки со спутников (фотографии, данные, полученные с помощью радаров и датчиков), уже существующие карты и базы данных, а также статистические данные.
Вторая часть картографии — математическая картография. Она занимается изучением проекций, то есть геометрических и математических преобразований, позволяющих изобразить искривленную земную поверхность на плоскости. Именно проекции определяют, какую форму будут иметь страны и континенты на картах. Термин «математическая картография» имеет очень широкое значение. Если говорить коротко, то математическая картография занимается формированием и изучением математических основ составления карт, а также охватывает теоретические и практические вопросы в смежных научных дисциплинах: уже упомянутой картографии, геодезии, географии, навигации и других науках. Один из важнейших инструментов математической картографии — дифференциальная геометрия.
Основной задачей картографии является изучение проекций. В этой главе мы подробнее расскажем о проекциях, лежащих в основе карт. Мы приведем их классификацию по форме построения, геометрическим свойствам, изучим характерные особенности, в частности искажения, возникающие при использовании разных проекций, а также рассмотрим основные результаты математической картографии и их применение при составлении реальных карт.
Третья и последняя часть картографии — это дизайн и составление карт. Традиционно карты имеют бумажную основу. В прошлом они рисовались вручную, позднее, с изобретением книгопечатания, стали изготавливаться печатным способом, и качество карт неуклонно возрастало. Сегодня благодаря новым технологиям стало возможным публиковать цифровые карты и карты других форматов. Любой, кто работает с такой картой, может не просто пассивно получать информацию, но и взаимодействовать с ней и даже принимать участие в ее создании.
Еще две важные части картографии — это история картографии, а также изучение способов применения карт. Изучение истории карт помогает лучше разобраться в них, осознать их роль в истории человечества и понять, как выглядел мир в разные времена для разных народов. Не следует забывать, что зная прошлое, мы сможем понять будущее и сделать его лучше. Наконец, изучение способов применения карт позволяет сделать их намного эффективнее, создавать новые методы, новые проекции, которые помогут решить текущие задачи.
В ходе истории картографы и математики работали над созданием совершенной карты, стремясь найти такую проекцию земной поверхности на плоскость, которая позволила бы составить наиболее точную карту нашей планеты. В этой главе мы вновь рассмотрим вопросы, перечисленные в предисловии. Их можно свести к одному, главному вопросу: как составить правильную карту Земли? Однако вначале следует выяснить, какую карту можно считать «правильной».
* * *
КАРТЫ ДЛЯ РАЗГАДКИ ЗАГАДОК
Иногда представление статистических данных на карте помогает совершить открытие. Карта позволяет увидеть закономерности, не столь заметные при ином способе представления данных. Простой пример этого — карта эпидемии холеры, составленная Джоном Сноу в 1854 году. В середине XIX века причины возникновения холеры и других инфекционных заболеваний были неизвестны. Возбудителями подобных заболеваний считались «миазмы» — вредоносные субстанции, передающиеся по воздуху. За несколько лет Лондон пережил множество вспышек холеры, унесших тысячи жизней. Английский математик
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.