Том 26. Мечта об идеальной карте. Картография и математика - [16]

Шрифт
Интервал



На многих древних картах масштаб указывался с помощью изображения компаса, как можно видеть на этой карте Магелланова пролива (1606), выполненной Йодокусом Хондиусом. На карте изображены и другие типичные элементы карт того времени, в частности роза ветров и фантастические животные.


Как влияет это уменьшение в размерах на метрические параметры карт, о которых мы говорили выше? Расстояния и длины кривых уменьшаются линейно в соответствии с масштабом, то есть каждый сантиметр глобуса соответствует 254,84 км земной поверхности. Следовательно, если мы хотим измерить расстояние от Барселоны до Аделаиды, нужно всего лишь измерить это расстояние на сферической модели Земли и умножить результат в сантиметрах на 254,84. Площади участков земной поверхности и масштаб карты связаны квадратичной зависимостью: каждый квадратный сантиметр на глобусе будет соответствовать 254,84>2 = 64943,4256 км>2.

Большие круги, указывающие кратчайшие пути, станут большими кругами на сферической модели, поэтому геодезические линии также останутся неизменными. Сохранятся также углы и направления. Как видим, преобразование, которое заключается в уменьшении размеров Земли, не изменяет метрические параметры, масштаб во всех точках сферической модели остается постоянным.

Математически это можно выразить следующим образом. Будем считать, что Земля и ее сферическая модель имеют общий центр, который мы примем за начало нашего трехмерного пространства

. Следовательно, наше математическое преобразование будет отображением Земли (S>1), которая является сферой радиуса 6371 км, на сферическую модель (S>2) радиусом 25 см φ: S>1 —> S>2, определяемым как φ(х) = е·х. На языке геометрии это отображение называется гомотетией (при е > 1 исходные фигуры увеличиваются, при е < 1, как в нашем случае, — уменьшаются). Это простое преобразование, которое однозначно определяется свойством пропорционального уменьшения размеров фигур.

Теперь, когда вопрос об изменении размеров решен, осталось решить проблему изменения формы. Как вы увидите, она намного сложнее, и именно здесь в действительности скрывается святой Грааль картографии — идеальная карта. Чтобы решить эту проблему, нужно изучить математические проекции сферы на плоскость и рассмотреть, как они изменяют различные метрические свойства. Это центральная тема математической картографии и настоящей главы. Как мы упоминали в предисловии, существует множество математических преобразований сферы в плоскость и, как следствие, множество разных проекций, на основе которых можно составить столь же большое число самых разных карт. Далее для простоты мы будем понимать картографические проекции как отображения сферы единичного радиуса на плоскость 

Кроме того, с математической точки зрения проекции должны обладать некоторыми естественными свойствами: в частности, они должны быть непрерывными и дифференцируемыми. Это означает, что сфера должна проецироваться на плоскость разумным образом, то есть без складок, разрезов и наложений.

Как мы уже отмечали, важно знать, как изменяются основные метрические свойства при использовании тех или иных проекций. Поэтому начнем наши поиски точной карты земной сферы с того, что докажем следующее утверждение: в проекции, сохраняющей расстояния между точками (такие отображения называются изометрическими), также сохраняются кратчайшие пути (геодезические линии), углы и площади. Кроме того, сохранение расстояний эквивалентно сохранению длин кривых. Предыдущие утверждения — не более чем частный случай анализа дифференцируемых отображений между регулярными поверхностями применительно к их метрическим свойствам (доказательство этого утверждения методами дифференциальной геометрии можно найти в любом классическом учебнике по этой дисциплине).



Проекция, сохраняющая расстояния, сохраняет и кратчайшие пути

Далее мы докажем, что любая проекция сферы на плоскость, сохраняющая расстояния (это означает, что расстояние между двумя произвольными точками сферы будет равно расстоянию между отображениями этих точек на плоскости), также сохраняет кратчайшие пути, иными словами, отображением больших кругов сферы будут прямые на плоскости.

Докажем это утверждение методом от противного, который заключается в том, что мы считаем утверждение, которое хотим доказать, ложным, и путем логических рассуждений приходим к противоречию, затрагивающему исходную гипотезу. Следовательно, утверждение, которое мы хотим доказать, будет истинным. В нашем случае предположим, что проекцией больших кругов не всегда будет прямая.

Если бы рассматриваемая проекция в самом деле не сохраняла кратчайшие пути, то существовали бы две точки сферы А и В и точка С, лежащая на кратчайшем пути между ними (то есть на большом круге, проходящем через А и В), такая, что ее отображение на плоскость С' не лежало бы на кратчайшем пути (прямой), соединяющем отображения точек А и В — А' и В' соответственно.



Имеем: так как рассматриваемая проекция сохраняет расстояния, то расстояние между отображениями А' и В' равно расстоянию между исходными точками А и В:

d(A, B) = d(


Еще от автора Рауль Ибаньес
Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Рекомендуем почитать
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.