Том 26. Мечта об идеальной карте. Картография и математика - [15]
Карта очага эпидемии холеры, составленная Джоном Сноу, на которой отмечены случаи заболевания холерой в Лондоне в 1854 году. Точки указывают место жительства заболевших, крестами отмечены колонки с питьевой водой. Точки сконцентрированы вблизи колонки на улице Броуд.
* * *
Мы можем использовать карты в разных целях: для поиска кратчайшего пути до точки назначения, определения расстояний, измерения длин рек, газопроводов или линий связи; для определения зоны поражения боевой ракеты, области утечки газа или радиационного заражения. С помощью карт можно определить направление ветра, задать курс при путешествии в открытом море, на земле или в воздухе, вычислить площадь определенной территории, проанализировать географическую информацию, представленную на карте (уровень жизни, плотность населения, экономические данные или данные об уровне производства товаров и т. д.). Для решения последней задачи важно, чтобы карта сохраняла площадь и, если возможно, форму, то есть общий вид рассматриваемых территорий. Карты позволяют изучать особенности рельефа местности, например бассейны рек, горные хребты, долины и побережья; при этом очень важно, чтобы на карте сохранялись их реальные очертания. По сути, при работе с картой нас интересуют вопросы измерения расстояний, длин кривых, поиск кратчайших путей (геодезических линий), определение направлений, углов, площадей и форм. Следовательно, при построении математических проекций земной поверхности на плоскости мы хотим, чтобы проекции сохраняли указанные параметры.
Остановимся на мгновение и подумаем о проблеме составления карты земной поверхности на бытовом уровне, не обращаясь к методам дифференциальной геометрии, необходимым, чтобы ответить на вопрос со всей точностью. Несложно увидеть две основные трудности, возникающие при составлении карт. Одна из них заключается в том, что, в зависимости от задачи, карты должны иметь разные размеры и на них должны быть изображены участки земли разной площади. Вторая трудность — различие между геометрической формой самой Земли и карты, на которой она изображается: Земля имеет форму сферы, а карта плоская.
Из всего сказанного следует, что математические проекции, используемые при составлении карт, становятся понятны, если рассмотреть построение карт как двухэтапный процесс. Сначала земная сфера проецируется на сферический глобус, уменьшенный (в масштабе) до выбранного нами размера. Эта часть проекции заключается в простом уменьшении изображения земной поверхности. Затем уменьшенное изображение проецируется на плоскость, в результате чего появляется нужная нам карта.
* * *
ТОПОЛОГИЧЕСКИЕ КАРТЫ
Если мы нарисуем карту нашего дома, квартала или района, на ней не будет сохранен ни один из привычных параметров. Точно такими же были первые карты, созданные человеком, например вавилонская карта VI века до н. э., изображенная на глиняной табличке. Это так называемые топологические карты, на которых основное значение имеют отношения вида «близко — далеко», «вместе — раздельно», а также порядок и непрерывность. На топологических картах обычно изображают взаимосвязи между элементами местности. Хрестоматийным примером таких карт служат схемы метро, так как для тех, кто ими пользуется, важнее не расстояние между станциями, а их число и схемы пересадок.
К топологическим картам относятся так называемые фэнтези-карты вымышленных миров, например карта Средиземья из «Властелина колец» Дж. Р. Р. Толкиена (1954) или «живописные карты», которые можно увидеть, например, в парках аттракционов. К этому же виду относятся карты нейронных сетей и другие карты, используемые в информатике, а также карты, связанные с графами.
* * *
Описанная выше сферическая модель Земли — это идеальная модель земной поверхности, которая отличается от нее только размером, но не формой. Масштаб указывает разницу в размерах между Землей и сферой. Определить его можно, разделив радиус сферы на радиус Земли. Рассмотрим глобус радиусом 25 см. Радиус Земли будем считать равным 6371 км (если использовать размеры эллипсоида WGS84). В этом случае масштаб равен
Этот масштаб, который обычно записывается как 1:25484000, означает, что каждый сантиметр глобуса соответствует 25484000 см, то есть 254,84 км земной поверхности.
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.