Том 26. Мечта об идеальной карте. Картография и математика - [12]

Шрифт
Интервал

Можно было решить задачу о долготе, зная относительное положение разных небесных тел. Так, астроном Иоганнес Вернер (1468–1522) предложил составить карту положений звезд, чтобы предсказать, когда Луна будет находиться рядом с теми или иными небесными телами в разные годы. Этот метод очень помог бы мореплавателям, однако он был небезупречен: положения звезд были известны неточно, не существовало инструментов для измерения расстояний между звездами и Луной, а траектория движения спутника Земли была изучена не до конца, поэтому точно предсказать положение Луны на небе также было очень сложно.

Галилео Галилей (1564–1642) в качестве астрономических часов предложил использовать затмения лун Юпитера, которые наблюдались тысячу раз в год, и предсказать их было очень легко. Однако эта идея также была принята не слишком тепло. Кроме того, точные наблюдения Юпитера в те годы были проблематичны.

Ученые предлагали все новые и новые методы. Одни из них были безрассудными, другие — более серьезными, например предлагалось использовать компас и учитывать изменения земного магнетизма в разных точках нашей планеты. Позднее ученые вновь обратились к методу определения долготы по положению Луны и расстояниям от нее до звезд. Это стало возможным благодаря усовершенствованию навигационных измерительных инструментов, в частности квадрантов и секстантов, развитию астрономии и публикации подробного альманаха по данным наблюдений в новой Гринвичской королевской обсерватории. Кроме того, с помощью теории тяготения Ньютона была получена более точная информация о движении Луны.



Секстант — важный инструмент морской навигации. Он позволяет измерять углы между двумя звездами или двумя точками побережья, а также высоту звезд на небосводе.


Наиболее удачное решение задачи об определении долготы предложил английский часовщик Джон Гаррисон (1693–1776), который сконструировал морской хронометр высокой точности, позволявший, находясь в любой точке мира, вычислять время в порту отплытия и, соответственно, долготу. Мореплаватель в открытом море должен был всего лишь определить по солнцу, когда наступит полдень, посмотреть, какое время показывает хронометр (а он показывал время в порту отплытия), рассчитать разницу во времени между портом и кораблем, умножить число часов на 15° и получить разницу в долготе относительно порта отплытия. Такое механическое решение задачи о долготе не обрадовало ни ученых того времени, ни членов Комитета по долготе, учрежденного английским парламентом. Чиновники всячески оттягивали выплату часовщику Джону Гаррисону причитающейся ему премии, надеясь, что свое решение предложат астрономы. Однако в конечном итоге всем пришлось признать, что морские хронометры Гаррисона позволяли определить долготу с требуемой точностью.

В результате всего изложенного можно сказать, что любая точка земной сферы однозначно задается параллелью и меридианом, проходящими через нее, или, что аналогично, широтой и долготой, которые называются географическими координатами.



Хронометр Джона Гаррисона Н5. С помощью хронометра Н4, сконструированного этим английским часовщиком, удалось решить задачу об определении долготы. Н4 выглядел как карманные часы большого размера и имел примерно 13 см в диаметре. Его эффективность была доказана во время путешествия корабля «Дептфорд» на Ямайку. По прибытии в Порт-Ройал два месяца спустя хронометр Н4 отстал всего на 5 секунд. Обратный путь выдался невероятно трудным, и общее расхождение за все время путешествия возросло до 1 минуты 54 секунд. Несмотря на это ошибка при вычислении долготы по-прежнему была меньше, чем требовал Декрет по долготе. Джон Гэррисон все-таки получил причитавшиеся ему 20 тысяч фунтов премии, хотя и спустя много лет.

* * *

ГИБЕЛЬ «ТИТАНИКА»

Каждый из нас видел хотя бы один художественный или документальный фильм, посвященный гибели «Титаника». Возможно, именно поэтому мы хорошо знаем историю этого роскошного корабля, который был создан с использованием новейших технологий своего времени. «Титаник» был гордостью владельцев, ему было суждено стать флагманом трансатлантических путешествий начала XX века. Тем не менее ночью 14 апреля 1912 года корабль столкнулся с айсбергом и затонул. Спасти уцелевших пассажиров удалось благодаря тому, что были известны географические координаты места крушения. С «Титаника» по радио был отправлен сигнал SOS: «Столкнулись с айсбергом. Тонем. «Титаник». 41°16′ северной широты, 50°14′ западной долготы. Срочно пришлите помощь». Корабль «Карпатия», находившийся ближе всего к месту катастрофы, получил сообщение и быстро направился в точку с указанными географическими координатами. «Карпатия» прибыла вовремя, удалось спасти более 700 человек (большинство из них составляли женщины и дети), находившихся в шлюпках.

* * *

Большие круги, геодезические линии сферы

Расстояние между двумя точками произвольной поверхности можно определить как длину кратчайшей из кривых, соединяющих эти две точки (именно так поступают геометры). По сути этим расстоянием будет длина кратчайшего пути между двумя рассматриваемыми точками, при условии что такой путь вообще существует. В геометрии кривые, указывающие кратчайший путь на поверхности, называются геодезическими линиями. Впрочем, это понятие несколько шире и включает кривые, определяющие «локальный» кратчайший путь. Что это означает? Это означает, что мы можем выбрать две точки поверхности, соединенные геодезической линией, так, что она не укажет наименьшее расстояние между ними. Однако если мы выберем две произвольные промежуточные точки геодезической линии, близкие друг к другу, то кратчайшим путем между ними всегда будет соединяющая их часть геодезической линии, как показано на рисунке.


Еще от автора Рауль Ибаньес
Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.