Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [7]
* * *
ЧИСЛО τ В ЕГИПТЕ
В папирусе Ахмеса приводится древнейшее приближенное значение числа τ, которое несколько больше известного нам: оно равняется 256/81, то есть 3,1604. Возможно, эта оценка является самой древней, но не самой точной. В последующих документах приводятся более точные значения. Из них наиболее близко к истинному 3 + 1/7.
* * *
Все эти расчеты можно было выполнить благодаря изобретению папируса. Ранее использовались таблички из глины, воска и других материалов и выполнять подобные операции на них было сложно и неудобно. Египтяне могли писать на папирусе почти так же, как мы делаем записи на бумаге. Для записи на папирусе было создано иератическое письмо — упрощенное иероглифическое письмо, которое использовали писцы в государственных учреждениях. Позднее появилось демотическое письмо, которое, как следует из названия, использовали простолюдины («демос») в повседневной жизни, а иератическое письмо применялось только для записи религиозных текстов. В ходе упрощения письма форма записи чисел изменилась, и стало возможным появление цифр.
Папирус Эберса (слева), датируемый XVI веком до н. э. Он содержит медицинский текст и является примером иератического письма. В отличие от него Розеттский камень, датируемый II веком до н. э., содержит три типа письма: иероглифическое, демотическое и греческое.
В демотическом письме была решена проблема исходной египетской нотации, в которой каждая степень 10 обозначалась отдельным символом, поэтому для записи, например, числа 9 требовалось девять раз записать символ единицы, для записи числа 99 — девять раз записать символ десятки и девять раз — символ единицы. В демотическом письме были введены отдельные символы для чисел от 1 до 9, для десятков от 10 до 90, аналогично для остальных степеней десяти. Для представления чисел требовалось запоминать соответствующие символы. Может показаться, что запомнить столько символов было непросто, но это не было чем-то непривычным для египетских математиков. Например, для записи сумм и разностей в папирусе Ахмеса используются изображения камней на разных позициях.
Фундаментом греческой математики были вавилонская и египетская математика. Математические методы, созданные египтянами, попали в Грецию благодаря торговле, достигшей расцвета в период между 700 и 600 годом до н. э. Это был золотой век обмена знаниями, когда многие греческие математики совершали путешествия в Египет, чтобы познать секреты тысячелетней мудрости.
Возможно, под влиянием Египта греческие математики проявляли особый интерес к геометрии. В итоге они не просто дополнили геометрию, а вывели ее на принципиально иной уровень. Как и в других областях знания, греки придали математике строгость и абстрактный характер, сделав ее наукой в современном смысле этого слова. В Древнем Египте математические свойства не доказывались: за основу брались конкретные примеры, а свойства выводились из практических наблюдений.
Греки, напротив, стремились найти причину каждого явления и доказать математические свойства, исходя из аксиом. Египтяне искали решения практических задач, а греки обожали знание ради самого знания и занимались математикой не потому, что она была полезной для чего-либо.
С другой стороны, влияние вавилонян прослеживается в греческой астрономии. Именно через Древнюю Грецию вавилонская шестидесятеричная система дошла до наших дней. Слова «минута» и «секунда» имеют греческое происхождение, но в современные языки они попали из латыни. Они впервые упоминаются в источнике XIII века, где одна шестидесятая часть обозначалась как «первая меньшая часть», шестидесятая часть от шестидесятой части — «вторая меньшая часть» и так далее. На латыни эти фразы звучат как pars minuta prima, pars minuta secunda и так далее. Так появились знакомые нам слова «минута» и «секунда». Следует заметить, что в действительности эти слова дошли до наших дней несколько более сложным путем. Латинский текст XIII века был переведен не с греческого, а с арабского подстрочника исходного греческого текста. И снова мы видим, что наследие Античной Греции стало известно западной цивилизации благодаря арабам, бережно охранявшим его на протяжении веков.
Греческая система счисления появилась около 500 года до н. э. в Ионии и была схожа с египетской иератической системой. Например, числа от 1 до 9 обозначались отдельными символами; десяткам от 10 до 90 и сотням от 100 до 900 также соответствовали отдельные символы. В качестве символов использовались буквы греческого алфавита и три буквы финикийского алфавита: дигамма (обозначавшая 6), коппа (обозначавшая 90) и сампи (обозначавшая 900).
С помощью греческих символов можно было записать любое число от 1 до 999.
Для записи тысяч использовались те же символы, перед которыми ставилась запятая. Так, выражение «α» обозначало 1000, «β» — 2000 и так далее. Эта система счисления, как и египетская, была аддитивной; таким образом, число ρκε обозначало 125, так как ρκε = ρ + κ + ε = 100 + 20 + 5. В следующей таблице приведены буквы, соответствующие основным числам.
Для представления чисел, кратных 10000, вплоть до 99990000, использовалась буква
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.