Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [8]
Буква М обозначала 10000 и происходила от слова «мириада» (греч. myriás — μυριασος), означавшего «сто сотен». В альтернативной записи буквы записывались над буквой М. Например,
а также
Для записи еще больших чисел использовались две буквы М, означавшие 10 000>2.
В египетской нотации порядок следования цифр не имел значения, однако в греческой нотации цифры записывались слева направо, как при письме. Цифры, записанные слева, имели больший «вес». Благодаря этому стало возможным отказаться от запятых: они не записывались, если значение числа можно было однозначно понять без них. Однако числа записывались буквами, поэтому иногда их было непросто отличить от обычного текста. Для этого греки ставили пометку в конце числа или добавляли горизонтальную черту поверх него. Так, число 871 записывалось как
или как
Эта нотация не способствовала развитию исчисления и записи чисел на бумаге.
Считается, что для решения арифметических задач греки использовали главным образом абак, а математики должны были использовать символы.
Умножение в Древней Греции выполнялось иначе, чем в наши дни. Сегодня мы складываем произведения первого множителя на каждую из цифр второго множителя. Греки, напротив, умножали второй множитель на каждую цифру первого. Так как вместо цифр использовались символы, значение которых зависело от позиции (в записи «πσ» π означало 80, а не 8), результат при промежуточном умножении получался сразу, без дополнительных действий.
Допустим, мы хотим вычислить произведение 24·53 (в греческой нотации это эквивалентно произведению κδ и νγ). Сначала нужно умножить κ, то есть 20, на цифры числа 53, то есть 20·ν и 20·γ (в современной нотации — 20·50 и 20·3). Далее аналогично рассматривается вторая цифра первого множителя: 8, обозначающая 4, умножается на ν, затем 8 умножается на γ (в современной нотации 4·50 и 4·3).
Затем промежуточные результаты складываются. В современной нотации это записывается так:
24·53 = (20 + 4)·(50 + 3) = 20·50 + 20·3 + 4·50 + 4·3 = 1272.
В графическом виде умножение в греческой нотации выглядит так:
Использование 27 символов затрудняло вычисление промежуточных результатов, так как греческая таблица умножения должна была содержать 27·27 = 729 ячеек. Считается, что именно по этой причине решающую роль в развитии вычислений сыграл абак. Греческие абаки представляли собой таблички из нескольких столбцов, в которых располагались камешки или фишки. Каждому столбцу соответствовала степень 10; также имелись отдельные столбцы для дробей.
Этот абак, который представляет собой мраморную табличку, был найден на греческом острове Саламин в 1846 году.
Ученым удалось изучить эти таблички, так как некоторые образцы, например абак с острова Саламин, дошли до наших дней и, кроме того, содержат информацию о значениях, соответствующих столбцам. В этом абаке с острова Саламин каждый столбец означает определенное количество греческих монет. Большие столбцы обозначают (справа налево) 1, 10, 100, 1000 и 10 000 драхм, затем 1, 10, 100, 1000 и 10 000 талантов (один талант равнялся 6000 драхм). Малые столбцы соответствуют дробям. Использовались следующие дробные части драхмы: обол (один обол равнялся 1/6 драхмы), половина обола, четверть обола и халкус (один халкус равнялся 1/8 обола). Камешки, расположенные под линией, обозначают единицу; расположенные над линией — пять единиц. Следовательно, на следующей схеме представлено число 502158 + 2 обола + + 1/2 обола + 1 халкус.
При сложении с помощью абака камешки ставились рядом в соответствии с их позицией. Когда в нижней части накапливалось пять единиц, они заменялись одной единицей в верхней части, а две единицы в верхней части заменялись одной единицей в следующем разряде. При вычислениях с помощью абака следовало помнить, что 6000 драхм равняются одному таланту, а 6 оболов — одной драхме.
Таблица из «Альмагеста» — труда по астрономии, написанного Клавдием Птолемеем во II веке, в котором используются дроби.
Как и вавилонянам, грекам были известны шести десятеричные дроби, о чем упоминает Птолемей в своем «Альмагесте», однако в математических вычислениях греки использовали египетскую систему. В комментариях к трактату Архимеда Евтокий Аскалонский использует
для обозначения 1838 + 1/9 + 1/11, а
для обозначения 2 + 8/11 + 8/11 + 1/99 + 1/121.
Геометрия в Древней Греции находилась на очень высоком уровне развития, и грекам удалось получить более точную оценку числа π, чем их предшественникам. Архимед доказал, что число π лежит в интервале 3 + 10/71 = 223/71 < π < 3 + 1/7 = 22/7 (что соответствует среднему значению 3,141851), а Птолемей получил приближенное значение, равное 3,141666. Эти значения были получены с помощью двух правильных многоугольников (вписанного и описанного).
Гоавюры, посвященные Архимеду (слева) и Птолемею (справа).
Архимед исходил из того, что шестиугольник, вписанный в окружность единичного радиуса, имеет периметр, равный 6, а описанный шестиугольник — 4·√3. Следовательно, число π лежит в интервале от 3 до 2·√3. Он учитывал, что квадратный корень из 3 удовлетворяет следующему неравенству: 265/153 < √3 < 1351/780. Далее он перешел к правильным многоугольникам с большим числом сторон. Выбрав в качестве исходной фигуры шестиугольник, Архимед последовательно удваивал число его сторон, рассмотрев правильные многоугольники с 12, 24, 28 и 96 сторонами. С помощью правильного 96-угольника он получил приближенное значение 6336/(2017 + 1/4)< Я < 14688/(4673 + 1/2). Так как 3 + 10/71 < 6336/(2017 + 1/4) <
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.