Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [6]
Деление выполнялось как операция, обратная умножению. В качестве примера приведем те же числа. Попробуем разделить 901 на 17. Результат должен равняться 53. Результатом деления является целое число без знаков после запятой.
В качестве исходных берется знаменатель 17 и 1. Далее аналогично прошлому примеру оба эти числа удваиваются. Результатом будет 34 и 2. Далее это действие повторяется, результат будет равен 68 и 4. Эти действия повторяются до тех пор, пока первое значение не станет больше числителя, который в нашем примере равен 901. Когда первое значение становится больше числителя (901), полученная пара чисел игнорируется. Результат алгоритма приведен ниже.
Следующая пара чисел — 1088 и 64 — отбрасывается, так как первое число больше 901. Далее нужно подобрать такие числа из первого столбца, чтобы их сумма равнялась 901. В нашем примере это 544, 272, 68 и 17 (так как 544 + 272 + 68 + 17 = 901). Сумма соответствующих им чисел из правого столбца и будет результатом деления. Результат равен 32 + 16 + 4 + 1 = 53.
Как и в случае с умножением, разложение числа 901 является единственным. Мы представили 901 как сумму степеней двойки, умноженных на 17, при этом сумма этих степеней двойки равна 53. Результатом деления в этом случае является целое число. В случаях когда это невозможно и результат содержит несколько знаков после запятой, в этом алгоритме учитываются дроби. Однако алгоритм работы с дробями, который использовали египтяне, был намного сложнее современного. За некоторыми исключениями, рассматривались только дроби вида 1/n, то есть дроби, числитель которых равен 1. Любопытно, что причиной этому было ограничение, вызванное способом записи дроби: сначала записывался символ для обозначения дроби, затем — символы, соответствующие числу в знаменателе. Информация о числителе не записывалась, поэтому он мог равняться только единице.
Для обозначения дроби египтяне использовали этот символ:
Рядом с ним записывался знаменатель, в нашем примере это 21:
Так египтяне записывали дробь 1/21.
Мы упомянули, что существовали дроби с числителем, отличным от 1. Речь идет о дроби 2/3, которая обозначалась отдельным символом, и о дроби вида n/(n + 1), обратной дроби (1 + 1/n). Иными словами, 1/(1 + 1/n) = 1/((n + 1)/n) = n/(n + 1).
Важность дробей и действий с ними четко прослеживается в папирусе Ахмеса, который начинается с представления дроби 2/n в виде суммы 1/x + 1/y + … + 1/z для всех нечетных n от 5 до 101. Далее приводятся аналогичные представления для дробей вида n/10 при n от 2 до 9.
* * *
ПАПИРУС АХМЕСА
В этом знаменитом египетском папирусе длиной 6 метров приводится 87 разнообразных задач с решениями. Он был написан в период с 2000 по 1800 год до н. э. Его автор Ахмес указывает, что он воспроизводит знания, насчитывающие более двух сотен лет, необходимые для будущих писцов. Таким образом, папирус Ахмса можно считать примитивным учебником по математике. В настоящее время папирус хранится в Британском музее, куда он поступил из коллекции Генри Райнда в 1858 году. (По имени владельца его еще называют папирусом Райнда.) В нем также объясняются действия с дробями.
* * *
Папирус Ахмеса содержит информацию о выполнении действий с дробями, а также позволяет получить представление о типичных задачах, которые решали египтяне, и о способах их решения. Первые задачи папируса Ахмеса — это задачи о делении чисел на 10. При их решении использовалась уже упомянутая таблица чисел вида п/10. Далее приводятся некоторые задачи из арифметики и геометрии, а также задачи, которые можно решить с помощью линейных уравнений вида ах + Ьх = с. Некоторые из задач папируса Ахмеса содержат неизвестные, возведенные в квадрат (в современной нотации), однако, несмотря на это, считается, что египтяне не умели решать уравнения второй и третьей степени.
Большинство задач решаются методом, который сейчас известен как метод ложного положения. Лишь задача 30 решается современным способом — с помощью факторизации и деления. Чтобы объяснить метод ложного положения, рассмотрим в качестве примера задачу 24, которая в наши дни решается с помощью линейного уравнения. Задача звучит так:
«Определите цену кучи, если куча и седьмая часть кучи стоит 19».
В современной нотации условие задачи записывается так: х + 1/7х = 19.
Метод ложного положения заключается в следующем. Мы предполагаем, что неизвестная равна определенному числу, и вычисляем результат для этого значения неизвестной. Так как выбранное нами значение неверно, результат также будет ошибочным, поэтому мы скорректируем значение переменной так, чтобы получить верный результат. Допустим, что цена кучи в нашей задаче равна 7, то есть х = 7. Цена кучи и ее седьмой части будет равна 8. Иными словами, при х = 7х + 1/7x = 8. Далее нужно определить, как следует изменить выбранное нами значение 7, чтобы результат выражения был равен 19, а не 8. Нужно умножить 8 или х на 19/8. Используя только дроби с числителем, равным 1, получим, что 2 + 1/4 + 1/8 = 19/8. Умножив 7 на (2 + 1/4 + 1/8), получим 16 + 1/2 + 1/8. В папирусе также показывается, что это решение верно, так как это значение и его седьмая часть в сумме дают 19.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.