Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [5]

Шрифт
Интервал

= 20/60 = 1/3.

Для вычисления квадратного корня вавилоняне использовали алгоритмический метод, известный в наше время как метод бисекции. Его авторство приписывается многим философам и математикам, среди которых Архит Тарентский и Герон Александрийский. Этот метод также упоминается как метод Ньютона, однако достоверно известно, что его использовали вавилоняне.



Для данного числа N, из которого мы хотим извлечь квадратный корень, находится два приближенных значения а>1 и Ь>1 квадрат одного из которых больше N, другого — меньше. Далее рассчитывается значение а>2 = (a>1 + b>1)/2, после чего его квадрат сравнивается с N. Если он больше N, то а>2 заменяет прежнее значение, большее N. Если же он меньше N, а>2  заменяет меньшее из значений. Этот процесс повторяется до тех пор, пока не будет найдено число, квадрат которого точно или с достаточной точностью равен N.

Вавилоняне также умели решать системы уравнений и уравнения второй степени с вещественными корнями. Эти задачи упоминаются в текстах, датируемых примерно 2000 годом до н. э. «Протоматематики» Вавилонии также умели решать некоторые уравнения третьей степени. Уравнения вида x>3 = а или х>3  + х>2 = с решались с помощью таблиц. Более сложные уравнения, имевшие вид ах>3 + Ьх>2 = с, сводились к уравнениям первых двух видов.

Анализ вавилонских текстов показывает, что математика была для вавилонян не просто средством решения практических задач. В этом заключается ее фундаментальное отличие от древнеегипетской математики, которая считалась намного более утилитарной. Вавилоняне достигли значительных успехов в арифметике и алгебре, но в отличие от египтян не преуспели в геометрии. Знания геометрии в Вавилонии касались лишь немногих фигур, в частности треугольников и четырехугольников.

* * *

УРАВНЕНИЯ ВТОРОЙ И ТРЕТЬЕЙ СТЕПЕНИ

Уравнения второй степени вида ах>2+ Ьх + с = 0 обычно решаются с помощью формулы


Эта формула позволяет получить вещественные решения, когда дискриминант положителен или равен нулю, то есть выражение Ь>2 4ас больше либо равно нулю.

Для решения уравнений вида ах>3 + Ьх>2 = с вавилоняне умножали уравнение на (а>2/Ь>3) и получали уравнение вида (ах/b)>3 + (ах/b)>2 = са>2>3 Оно решалось с помощью таблиц для уравнений вида х>3+ х>2 = с, после чего рассчитывалось значение х.

* * *

Однако труды вавилонян, посвященные окружностям, сохранились до наших дней. Именно вавилоняне разделили окружность на шесть частей построением окружностей радиуса, равного радиусу исходной окружности. Каждая из этих частей делилась на 60; таким образом, вся окружность делилась на 360 градусов. Так как использовалась шести десятеричная система, то градусы делились на 60 минут, минуты — на 60 секунд. В качестве приближенного значения π использовалось значение π = 3, хотя в табличке, найденной в Сузах, путем сравнения периметра шестиугольника и длины окружности получено значение π = 31/8.



Построение шестиугольника, вписанного в окружность. Сторона шестиугольника равна радиусу окружности.


Вычисления в Древнем Египте

В древнеегипетской системе счисления для степеней десяти использовались отдельные символы. Так, существовали особые символы для единиц, десятков, сотен и так далее.

Египетская система счисления, в отличие от вавилонской, не была позиционной. Далее мы продемонстрируем иероглифы, соответствующие наиболее часто используемым числам.



Египетская система счисления была аддитивной, в отличие от нашей системы счисления, которая, подобно вавилонской, является позиционной. В аддитивной системе счисления, например, число 3204 представляется в виде 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1. В виде египетских иероглифов оно записывается так:



С помощью этой системы можно было записывать большие числа. Кроме того, упрощались операции сложения и вычитания. При сложении чисел значения «переносились» в старший разряд, при вычитании — «забирались» из старших разрядов. Умножение сводилось к сложению и вычитанию интересным, но непростым способом.

Рассмотрим, как выполнялось умножение, на примере чисел 17 и 53. Нужно взять пару чисел 1 и 53 и удвоить их. Результатом удвоения будут числа 2 и 106. Повторив эту операцию, получим 4 и 212. Нужно удваивать числа до тех пор, пока первое из них не превысит 17. После этого процесс прекращается, а результат, полученный на последнем шаге, игнорируется. Результатом этих действий в нашем примере будут следующие пары чисел.



Теперь нужно определить, как можно получить 17 путем сложения чисел из первого столбца. Единственный возможный способ получить 17 — сложить 1 и 16. Следовательно, для получения результата умножения нужно сложить значения, записанные справа от 1 и 16, то есть 53 и 848. Их сумма равна 901. Таким образом, результат умножения 17 на 53 равен 901.



Можно заметить, что число 17 рассматривается как сумма степеней двойки, а те, в свою очередь, умножаются на 53. Так, разложение числа 17 выглядит следующим образом: 17 = 2>0 + 2>4. При сложении в качестве слагаемых выбираются значения (2>0  + 2>4)·53, остальные произведения, 2>1·53, 2>2·53 и 2>3·53, не используются, так как не входят в разложение числа 17. Этот алгоритм аналогичен тому, что используется в компьютерах. Результат этого алгоритма верен, поскольку представить любое число в виде суммы степеней двойки можно единственным образом. Следовательно, в нашем примере существует единственное множество значений, сумма которых равна 17. Поэтому значения из правого столбца таблицы, которые мы складываем, также можно выбрать только одним способом. Этот метод умножения известен под названием египетского умножения.


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.