Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [2]
Сторонники второй теории полагают, что числа возникли в ритуалах. В церемониях участники должны были располагаться в определенном порядке; поэтому сначала появились порядковые числа, а затем количественные. Последняя теория утверждает, что числа возникли в конкретном географическом регионе, откуда распространились по миру. В ней же целые числа делятся на четные и нечетные: нечетные считаются мужскими, четные — женскими. Эта классификация сегодня встречается во многих мировых культурах.
Использование десяти цифр и системы счисления по основанию 10 для представителей современной западной цивилизации кажется крайне логичным и естественным. Нам сложно представить, что эта система была известна не во всем мире.
Однако факты неоспоримы: например, исследования нескольких сотен племен американских индейцев показывают, что они использовали совершенно разные системы счисления, некоторые из которых применялись чаще других. Почти в трети племен была принята десятичная система, однако почти столько же индейцев использовали пятеричную систему (в некоторых случаях пятерично-десятичную). В оставшейся трети племен применялась преимущественно двоичная система (свыше 20 %), затем — двадцатеричная (10 %) и троичная (1 %).
* * *
ПИРАХАН
Эта история больше похожа на сюжет приключенческого романа. В 1970-е годы американский миссионер Дэн Эверетт, который сегодня является одним из ведущих лингвистов современности, прибывает в Амазонию, чтобы изучить удивительный язык племени пирахан и проповедовать туземцам христианство. После семи лет, проведенных с жителями племени, сам Зверей утратил веру. Племя пирахан в высшей степени удивительно: в языке племени, также известном под названием пираха, в отличие от всех известных современных языков отсутствует подчинительная связь. Кроме того, язык содержит всего десять фонем. У туземцев этого племени нет мифов и коллективной памяти. Они упоминают лишь о событиях, которые видели своими глазами они сами или кто-то из известных им людей, а также не представляют себе отдаленное будущее. Но самым удивительным результатом исследований Эверетта оказалось то, что в языке племени полностью отсутствуют числа и способы счета. Например, индейцы племени не различают единственное и множественное число и практически не проводят грань между исчисляемыми и неисчисляемыми предметами. Дэн Зверей рассказал о результатах своего исследования в книге Don't Sleep, There Are Snakes: Life and Language in the Amazonian Jungle, опубликованной в 2008 году.
* * *
С другой стороны, в поисках доказательств существования разных систем счисления совершенно не обязательно изучать далекие племена. В индоевропейских языках слово, означающее «восемь», происходит от слова, означающего «четыре», а латинское слово novem, означающее «девять», по-видимому, происходит от novus — «новый», что опять-таки указывает на использование систем счисления с основанием 4 и 8. Остатки двадцатеричной системы счисления прослеживаются в словах языка басков hogei, berrogei, hirurogei и laurogei, которые означают 20, 40, 60 и 80, в буквальном переводе — 20, 2·20, 3·20, 4·20, а также во французском слове «восемьдесят» — quatre-vingt. Аналогично в английском языке, где используется десятичная система счисления, можно заметить артефакты древности: eleven («одиннадцать») и twelve («двенадцать») происходят от one left — «остался один» и two left — «осталось два» (в том смысле, что они «остались» после 10).
* * *
ПРОИСХОЖДЕНИЕ МАТЕМАТИКИ
Спор о происхождении математики столь же древний, как и сама математика. 06 этой теме много размышляли Геродот и Аристотель. Первый считал, что геометрия возникла в Египте для разделения земель после ежегодных разливов Нила, следовательно, ее появление было вызвано практической необходимостью. Второй, напротив, полагал, что математика была создана жрецами в свободное от богослужений время. По его мнению, математика возникла как умственная деятельность, лишенная практического интереса.
Ежегодные разливы Нила (на фотографии — Нил, протекающий через Луксор) и необходимость восстанавливать границы земельных участков стали причинами возникновения математики, по мнению греческого историка Геродота, жившего в V веке до н. э.
* * *
Может показаться, что большие числа появились лишь недавно, а в античных текстах и записях упоминаются лишь сравнительно малые числа, но это совершенно не так. В Оксфордском университете хранится египетский папирус, возраст которого составляет около 5000 лет, с записью о победе фараона Нармера над ливанцами к западу от дельты Нила. В папирусе указано, что египтяне увели 120000 пленных, 400000 волов и 1422000 коз. Сотни тысяч и миллионы также упоминаются в древнеегипетской «Книге мертвых».
Папирус из «Книги мертвых»— сборника религиозных текстов, в котором упоминаются большие числа.
Хотя числа были известны в большинстве культур (пусть и различных систем счисления), дроби практически нигде не использовались. Египтяне рассматривали исключительно дроби вида 1/n; вавилоняне, которые располагали инструментарием, близким к современному, опирались на шестидесятеричную систему (по основанию 60).

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.

Книга Ника Дженса, фотографа дикой природы на Аляске, – это невероятная и во многом философская история об особенном черном волке, проявившем небывалую теплоту и привязанность к людям. Ромео, дикий зверь, выбравший своим домом окрестности города Джуно, первоначально вызвал у его жителей бурю противоречий. Однако со временем, видя, как волк играет с домашними собаками, выходит поздороваться со знакомыми ему людьми или провожает их на прогулку, они приняли и полюбили его. Проведя шесть лет по соседству с жителями Джуно, Ромео стал неофициальным символом города.

Суд – это место, где должна вершиться Справедливость. «Пусть погибнет мир, но восторжествует Правосудие!» – говорили древние. Однако в истории различных обществ мы встречаем примеры разных судебных процессов: на одних подсудимые приносятся с жертву сиюминутной политической целесообразности, на других суд оказывается не в состоянии разобраться в криминалистических хитросплетениях. Среди персонажей этой книги в разных главах вы встретите как знаменитых людей – Сократа, Жанну д’Арк, Петра I, так и простых смертных – русских крестьян, английских моряков, итальянских иммигрантов.

«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».

Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.