Том 15. От абака к цифровой революции. Алгоритмы и вычисления - [9]

Шрифт
Интервал

< 14688/(4673 + 1/2) < 3 + 1/7, он выбрал эти два значения в качестве границ интервала, в котором находится π. Птолемей рассматривал многоугольник с 360 сторонами.


Греки и простые числа

Простые числа — это натуральные числа, которые делятся только на единицу и сами на себя. Единица по определению не считается простым числом. Любое натуральное число можно представить в виде произведения простых чисел единственным образом (без учета перестановок множителей). Так, например:

120 = 5·3·2·2·2 = 2·5·2·2·3.

* * *

ПРОСТЫЕ ЧИСЛА, МЕНЬШИЕ 1000

Ниже перечислены простые числа, меньшие 1000. Они будут интересны тем, кто хочет проверить их знаменитые свойства, не затрудняя себя поиском.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997.

* * *

Греки изучили простые числа подробнейшим образом: они дали им определение и доказали их важнейшие свойства. Считается, что они были известны древним египтянам, однако не сохранилось никаких результатов, связанных с простыми числами, которые были бы получены предшественниками древних греков.

В 300 г. до н. э. Евклид, который работал в Александрии во времена правления Птолемея I (323–283 гг. до н. э.), в эпоху слияния египетского и греческого, обнаружил самое удивительное и важное свойство простых чисел. Он изложил его в своем трактате «Начала геометрии» — одном из важнейших трудов в истории математики. В нем заложены основы евклидовой геометрии, которая использовалась во всем мире на протяжении следующих двух тысяч лет. В предложении 20 книги IX «Начал» доказывается, что простых чисел бесконечно много.

Евклид рассматривает множество простых чисел S = {р>1, р>2…, р>n} и показывает, что число N = p>1·р>2·… ·р>n + 1 не делится на р>1, поскольку при делении на p>1  остаток равен 1. Аналогично N не делится на р>2…., р>n, так как при делении на р>2…,р>n остаток будет равен 1. Следовательно, N либо простое, либо является произведением простых чисел, не содержащихся в S. Таким образом, множество S не содержит в себе все простые числа. Так как S было выбрано произвольно, конечного перечня простых чисел не существует. Как следствие, перечень простых чисел бесконечен.



Фрагмент «Афинской школы» Рафаэля, на котором изображен автор знаменитых «Начал геометрии» Евклид.


Рим

Математика и математическая нотация в Древнем Риме не были столь развитыми, как в Греции и Вавилоне. Центр империи, столь плодородной в других областях, не подарил миру ни одного выдающегося математика. Во времена Рима важные события в математике происходили не в столице, а на периферии, в районах, где ощущалось влияние Греции и продолжались традиции греческой математики. Считается, что римская математика принадлежит к совершенно обособленной традиции и не связана ни с греческой, ни с вавилонской, а имеет этрусское происхождение. Основными авторами этого периода, продолжавшими греческие традиции, были Клавдий Птолемей, автор уже упомянутого «Альмагеста», Диофант и Папп Александрийский.

Диофант был автором книги под названием «Арифметика», Папп написал восемь книг с комментариями к трудам классических авторов.

Сам Цицерон признавал ограниченность римской математики в своих «Тускуланских беседах». Он пишет:

«Далее, выше всего чтилась у греков геометрия — и вот блеск их математики таков, что ничем его не затмить; у нас же развитие этой науки было ограничено надобностями денежных расчетов и земельных межеваний» («Тускуланские беседы», I, 5).



Пон-дю-Гар. Фотография Эдуарда Бальдю, середина XIX века. Этот акведук, который также служил мостом для экипажей, был построен римскими инженерами, которые в своих работах использовали математические знания Античности.


Однако этот вопрос, как и любой другой, следует рассматривать в перспективе. Возможно, римляне не совершили значительных открытий в математике и вычислениях, и греческая математика осталась непревзойденной. Однако нет никаких сомнений в том, что римляне были великими инженерами древности, а это невозможно без глубоких знаний математики. Многие из их инженерных и архитектурных шедевров сохранились до наших дней благодаря тому, что при их постройке использовались удивительные решения, и, разумеется, благодаря обширным знаниям математики, которые применялись при строительстве. Как следствие, римляне создали множество текстов о технологии строительства, среди которых стоят особняком работы самого известного архитектора — Витрувия.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.