На данном этапе наиболее эффективную защиту от подобных средств поражения обеспечивают ЗУДТ ХСЧКВ-34.
1* Подробно ЗУДТ кумулятивного действия описаны в журнале «ТиВ» № 2,3/2007 г.
Рис. 12. Схема ЗУДТ типа ХСЧКВ (варианты исполнения).
Рис. 13. Схема ЗУДТ типа «рамка», «крест», «кольцо».
ЗУДТ 4С20 и 4С22 после поражения средствами типа «ударное ядро». Фото авторов.
Устройство для защиты преграды со сферическими ячейками
Устройство для защиты преграды с размещением плоского слоя ВВ над сферической частью облицовки
Устройство для защиты преграды от КБ с полусферическими ячейками
Устройство для защиты преграды со сферически-цилиндрическими ячейками
Рис. 14. Схема ЗУДТ в виде гранул сферической или полусферической формы
ЗУДТ гидродинамического типа объемной формы
Разработка ЗУДТ объемной формы велась до принятия на вооружение ЗУДТ с плосконаправленной схемой. Был предложен ряд ячеистых устройств коробчатой и цилиндрической формы, такие как «рамка», «крест», «кольцо» (рис. 13).
Особенностью этого вида ЗУДТ являлась независимость их противокумулятивной стойкости от угла воздействия кумулятивной струи, но при этом уровень снижения ее бронепробития был недостаточно высок и уступал ЗУДТ с плосконаправленной схемой. Таким образом, в реализованных в 1970-е гг. конструкциях не удалось достигнуть требуемых характеристик, в результате чего указанные ЗУДТ на вооружение не принимались и в настоящее время рассматриваются рядом разработчиков только в исследовательском контексте. Однако ряд принципов, реализованных в данных конструкциях, все еще представляет интерес для перспективных разработок.
Рассредоточение ВВ в виде гранул сферической или полусферической формы в полимерном наполнителе позволит увеличить время функционирования ЗУДТ и вместе с тем снизит время одновременно срабатывающих устройств. В ряде предложений [12, 13] данный тип ЗУДТ обеспечивает защиту преграды независимо от угла встречи (характерно для ЗУДТ сферической и полусферической формы заряда ВВ). Защита от кумулятивных ПТС (в варианте Омского КБТМ [12]) обеспечивается путем образования эшелонированного гидродинамического течения, состоящего из откольных частиц с внутренней поверхности облицовки, основного материала облицовки и множества многослойно установленных со взаимным перекрытием в слоях взрывооткольных ячеек (рис. 14).
Мини-заряды взрывчатого вещества перед преградой размещают в локальных облицованных взрывооткольных ячейках послойно с полным перекрытием ячеистой структурой поверхности защищаемой преграды. При прохождении кумулятивной струей ячеистой структуры происходит серия микровзрывов, многократно воздействующих материалом облицовки и откольными элементами ячеек на струю.
Облицовку каждой взрывооткольной ячейки выполняют по форме тела вращения. Это сделано для организации в направлении оси тела вращения гидродинамического течения материала облицовки взрывооткольной ячейки и его откольных элементов при каждом микровзрыве. Для повышения защиты преграды взрывооткольные ячейки размещены в контейнере, выполненном в виде металлического экрана коробчатой формы и множества многослойно установленных со взаимным перекрытием в слоях ячеек, которые, в свою очередь, содержат слой заряда ВВ и облицовку. Выбор количества слоев и формы взрывооткольной ячейки определяется так, чтобы между соседними взрывооткольными ячейками не возникала детонация и обеспечивался требуемый уровень защиты от атакующих ПТС.
ЗУДТ невзрывного действия
Конструкции невзрывной противокумулятивной динамической защиты содержат вместо слоя ВВ между наружными инертными слоями материала с большой плотностью внутренний слой инертного в химическом отношении материала, именуемого «наполнитель», такого, например, как пластмасса, резина, парафин или смеси на их основе. При проникновении кумулятивной струи через «невзрывной» элемент в наполнителе формируется расходящаяся ударная волна (УВ), под воздействием которой осуществляется ускорение материала наружных слоев, окружающих место попадания КС. Из-за быстрого снижения давления в УВ (затухания УВ) ускорение внешних слоев локализуется около места попадания. Несмотря на ограничение размеров зоны, в которой происходит ускоренное движение внешних слоев ЭДЗ с инертным наполнителем, уменьшение глубины бронепробивного действия за счет разрушения высокоскоростной части КС может доходить до 65–70 % [14].
Состав ЗУДТ невзрывного действия может содержать окислитель (например, включающий нитраты, нитриты, хлораты и пр.) и углеродосодержащий энергетический материал (как вариант исполнения NaNO>3 и силиконовый наполнитель). В качестве катализатора может применяться оксид железа (Fe>2O>3). Предложенная реализация, согласно 115), способна обеспечить защиту легкобронированных боевых машин (ДБМ) от кумулятивных и кинетических боеприпасов (например, гранаты ПГ-7В и пули калибра 14,5 мм).
Считается, что применение невзрывных ЭДЗ наиболее перспективно при создании устройств защиты от действия кумулятивных зарядов для боевых машин, собственное бронирование которых не допускает использования большого количества защитных устройств взрывного типа (срабатывание таких ЗУДТ может привести к большим разрушениям защищаемой конструкции, чем будет произведено при действии одного кумулятивного заряда).