Техника и вооружение 2007 07 - [17]

Шрифт
Интервал


ЗУДТ электрического действия

Работа над электромагнитной электротермохимической защитой началась в СССР в институте гидродинамики им. Лаврентьева в послевоенный период. С 1970-х гг. исследования проводились в США в «Максвелл лабораториз» и франко-германском научно-исследовательском институте, а также в ряде других организаций. Активная деятельность в этом направлении продолжается и в наши дни.

В обычном случае электромагнитная броня имеет две расставленные на довольно большом расстоянии пластины, одна из которых соединена с конденсаторной батареей высокого напряжения, а другая заземлена. Когда при ударе кумулятивная струя пробивает пластины, она действует между ними как замыкатель и инициирует разряд электрической энергии, вызывающий большой импульс тока в ней. Это создает магнитомеханические неустойчивости в струе, что приводит к ее разрушению и резко снижает ее пробивную способность.

Электромагнитная броня предназначена для защиты от сердечников подкалиберных снарядов, а также от кумулятивных струй. Как и в случае с кумулятивной струей, прохождение через сердечники очень больших электрических токов вызывает нестабильность флуктуирования и расширения, что может привести к разрушению кинетических боеприпасов.

Сейчас существует несколько подходов к созданию электромагнитной защиты: непосредственная электризация, электромагнитный пуск метательных пластин и электротермическая защита, основанная на пиролизации в плазму рабочего материала.

Они делятся по принципу активации на самоактивирующиеся (непосредственная электризация, электротермическая защита) и несамоактивирующиеся защитные устройства, которые воздействуют на атакующий боеприпас, предварительно обнаружив его при помощи радара, матрицы или других внешних датчиков (метательные пластины, «умная броня»). Существуют способы защиты, объединяющие несколько принципов.


Варианты:

1 — импульсный источник электрической энергии: 2.3 — электроды; 4 — диэлектрик; 5 — защищаемый объект; 6 — проводник; 7 — проводящие разделители; 8 — сквозные каналы; 9 — заостренные выступы концентраторов электрического поля.


1 — конденсаторная батарея; 2.4 — металлические пластины; 3 — диэлектрик; 5 — защищаемый объект; 6 — индуктор; 7 — дополнительная пластина.

Рис. 15. Схема электродинамической защиты (варианты исполнения).


Непосредственная электризация

Электродинамическая защита данного типа устраняет недостатки ЗУДТ с применением ВВ и метаемых пластин, такие как падение эффективности при уменьшении угла подхода ПТС от нормали и наличие взрывчатого вещества значительной массы на поверхности объекта. Защитные устройства электродинамического действия обеспечивают в целом высокий уровень противокумулятивного действия независимо от углов подхода кумулятивной струи.

Действие данной защиты приводит к разрушению кумулятивной струи за счет большого импульса тока. Кроме того, возможны комбинированные методы воздействия, включающие метание (как воздействие импульса тока, так и метание с его помощью по направлению струи пластины, которая нейтрализует ее остатки). Подобные варианты защиты являются наиболее перспективными направлениями для оснащения АБМ (рис. 15Ц16).

Один из вариантов конструкции защиты («устройство электродинамической защиты тандемного типа» с несколькими слоями боевых элементов), предложенный НИИ Специального Машиностроения и НИИ Стали 117], содержит импульсный источник электрической энергии, соединенный с боевым элементом (с образованием электрической цепи), размещенным перед защищаемым объектом. Причем в электрическую цепь с помощью проводников с малым сопротивлением последовательно включены один или несколько аналогичных дополнительных боевых элементов, находящихся между основным боевым элементом и защищаемым объектом. Боевые элементы выполнены в виде двух электродов, разделенных диэлектриком (рис. 15).

Электроды основного и дополнительного боевых элементов, обращенные друг к другу, могут быть попарно объединены с образованием единого боевого элемента, с размещенными в массиве диэлектрика проводящими разделителями. В массиве диэлектрика дополнительных боевых элементов могут быть образованы сквозные каналы, соединяющие электроды и имеющие на их обращенных друг к другу сторонах заостренные выступы.

Другой вариант устройства электродинамической защиты (с использованием боевого элемента и метания пластины) содержит конденсаторную батарею, соединенную с элементом электродинамической защиты. Последний выполнен в виде металлических пластин, разделенных диэлектриком, при этом между конденсаторной батареей и одной из пластин имеется плоский индуктор, установленный на основной броне. На стороне индуктора, обращенной к элементу электродинамической защиты, смонтирована дополнительная пластина, которая при включении индуктора метается навстречу поражающему элементу.

Устройство электродинамической защиты объектов работает следующим образом: проникающая через пластины и элементы электродинамической защиты кумулятивная струя замыкает цепь, и посредством разрядки конденсаторной батареи нарастающий ток «сбивает» часть кумулятивной струи.


Еще от автора Журнал «Техника и вооружение»
Техника и вооружение 2010 01

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2012 12

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.




Техника и вооружение 2010 02

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 1998 05-06

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Рекомендуем почитать
Первый в династии

В предыдущих номерах журнал («КАЛАНИКОВ» №8, 9, 10/2009) мы рассказывали о полигонных испытаниях автомата Калашникова, проходивших в 1947-48 гг., результатом которых стала рекомендация к принятию автомата на вооружение Советской армии. Подходило время войсковых испытаний.


Техника и вооружение 2011 12

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2011 11

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Эскадренные миноносцы типа «Касатка», 1898–1925

В книге освящена история проектирования, строительства и боевой службы построенных для Русского флота в Германии эскадренных миноносцев типа “Касатка”. Этим кораблям довелось участвовать в боевых действиях на Тихом океане, в Балтийском и Северном морях в годы Русско-японской и Первой мировой войн.


Приказ по Военному ведомству № 133 от 1901 г.

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Техника и вооружение 2009 04

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.