| 600 | 480 | 660 | 500 |
| Ср. уд. давление на фунт, кг/см | 0,61 | 0,68 | 0,67 | 0.92 |
| Система активной защиты | предусматривается | нет | нет | нет |
| Динамическая защита | предусматривается | предусматривается | нет | нет |
| Год принятия на вооружение | 1987 | 1988 | 1987 | 1989 |
Другой недостаток южноафриканской модернизации — это напряжение в сети питания кондиционера и вспомогательной силовой установки. Оно составляет 380В, что противоречит требованиям безопасности для машин такого класса.
Таким образом, прошедшие модернизацию БМП-3 вновь уходят в большой отрыв от своих зарубежных конкурентов. Обидно только одно, что таких машин в Российской армии практически не осталось.
Выход из десантного отделения на БМП-3
БМП-3. оснащенная комплектом динамической защиты
БМП-3 с южноафриканским кондиционером не обладает мореходными качествами, присущими этой машине. Для нормального движения по воде ее пришлось уравновешивать мешками с песком
БМП-3 с системой "Арена-3"
Вспомогательная силовая установка модернизированной на "Электромашине" БМП-3 обеспечивает питание кондиционера и комплекса вооружения без запуска основного двигателя
Высадка мотострелкового отделения из БМП-ЗФ
При входе в воду БМП-3 скорость не снижает
БМП-3, оснащенная системой комплексного оптико-электронного подавления "Штора-1", на выставке IDEX в Абу-Даби, март 2003 г.
На вкладке использованы фото С. Суворова и А. Чирягникова
Сергей Ганнн Владимир Коровин Александр Карпенко Ростислав Ангельский
Продолжение. Начало см. ТиВ № 11/2003 г.
Авторы выражают глубокую благодарность за помощь ветерану Войск ПВО Михаилу Лазаревычу Бородулину.
Планировавшиеся летные испытания требовали изготовления большого числа ракет. Возможности опытного производства ОКБ-2 были ограничены, в особенности, в части выпуска столь крупногабаритных изделий. Поэтому уже на начальной стадии испытаний потребовалось подключить к производству В-860 серийный завод. С этой целью выпускавшие ЗУР системы С-75 столичный завод № 41 и завод № 464 в подмосковном поселке Долгопрудный приступили к подготовке производства под серию ракет для С-200. Но фактически они в их изготовлении не участвовали, так как к дальнейшем были переориентированы на производство других видов перспективной зенитной ракетной техники. Решением ВПК № 32 от 5 марта 1960 г. серийное производство ракет для С-200 было передано от московского завода № 41 ленинградскому заводу № 272 (впоследствии — "Северный завод"), в конце 1950-х гг. переключенному с выпуска вертолетов и легкомоторных самолетов разработки ОКБ А.С. Яковлева на зенитные ракеты 13Д и 20Д для системы С-75. В том же 1960 г. завод № 272 изготовил первые так называемые "изделия Ф" — ракеты В-860 для системы С-200.
По указанию Д.Ф. Устинова, с августа 1960 г. работы по ЖРД Л-2 для ракеты В-860 продолжались только в ОКБ-466, а ОКБ-165 было предписано сосредоточить усилия на разработке бортового источника питания для этой ЗУР. В результате ракета В-860 в дальнейшем оснащалась жидкостным ракетным двигателем, разработанным в ОКБ-466 под руководством Главного конструктора А.С. Мевиуса. Этот двигатель создавался на базе однорежимного двигателя "726" ОКБ А.М. Исаева с максимальной тягой 10 т. В ходе отработки конструкции двигателя и его систем было проведено 266 стендовых испытаний, из них по "этажам" — 170. Провели примерно 40 испытаний на работоспособность при температуре — 50 град. С, 18 испытаний — при температуре +50 град С.
Жидкостный ракетный двигатель с турбонасосной системой подачи компонентов топлива в камеру сгорания одноразового действия (без повторного включения) работал на компонентах. ставших уже традиционными для отечественных ЗУР. В качестве окислителя использовалась азотная кислота с добавкой четырехокиси азота, а горючего — триэтиламинксилидии (ТТ-02, "тонка"). Температура тазов в камере сгорания достигала 2500–3000 град. С. Двигатель был выполнен по "открытой" схеме — продукты сгорания газогенератора. обеспечивающего работу турбонасосного агрегата, выбрасывались через удлиненный патрубок в атмосферу. Начальный запуск турбонасосного агрегата обеспечивался пиростартером.
В начале работ по В-860 ее проектировщикам пришлось столкнуться с еще одной проблемой. Оказалось, что обеспечение достаточно продолжительного управляемого гиперзвукового полета ракеты требует наличия на ее борту значительного запаса электроэнергии. Ее потребителями стало множество громоздких п энергоемких "ящиков", составлявших систему у правления ракетой. Первопричина, как говорится, лежала на поверхности: элементной базой аппаратуры тех лет были электронные лампы и сопутствовавшие им устройства. Золотой век полупроводников, а также микросхем, печатных плат и прочих "чудес" радиоэлектроники в ракетной технике тогда еще только намечался.
Аккумуляторные батареи, способные обеспечить ракету необходимым запасом электроэнергии, были крайне тяжелы и громоздки. Наиболее отработанным к тому времени решением этой проблемы было применение автономного источника электроэнергии, состоявшего из турбины, электрогенератора и преобразователей. Работу турбины обеспечивал горячий газ. получаемый на борту ракеты, обычно за счет разложения какого- либо однокомпонентного топлива. Так, например, на первых вариантах ЗУР комплекса С-75 для этих целей использовали изопропилнитрат. Но и в этом случае масса подобного устройства с запасом однокомпонентного топлива для В-860 превосходила все мыслимые пределы. Однако следует отметить, что в первом варианте эскизного проекта планировалось применение именно такого источника электропитания.