Техника и вооружение 2003 09 - [17]

Шрифт
Интервал


Уже к концу 1970 гг. вооруженные силы США располагали лазерными дальномерами, устройствами для подсвета целей, и оружием с лазерной системой высокоточного наведения бомб и снарядов по лучу и тд. В конце 60-х годов в дальнейших разработках типов мазеров были заложены основы создания высокоэнергстических лазеров, пригодных для использования в системах лазерного оружия. Были созданы:

в 1965 г. — фотодиссоциационный йодный лазер, разработанный фирмой UTRG (United Technology Research Center);

в 1968 г. — газодинамический СО.-лазер (фирма Avco Everett);

в 1969 г. — химический «водород- фтор» и «дейтерий-фтор» лазер (IIF/DF) разработки фирмы ITRC.

Газодинамический лазер (ГДЛ) стал первым высокомощным генератором лазерного излучения. Теоретические предпосылки для его создания в 1963 г. изложили Н.Г.Басов и A.П. Ораевский, высказавшие предположение о том, что инверсию населенностей в молекулярных системах можно создавать путем быстрого нагрева или охлаждения газа. Затем в 1965 г. И. Герл и А. Гертцберг предположили, что инверсию населенностей можно получить при быстром расширении первоначально нагретого газа в сверхзвуковом сопле Идею успешно использовала научно- исследовательская лаборатория Everett при создании мощного газодинамического лазера непрерывного действия, заработавшего в 1966 г. Это был первый газодинамический лазер на смеси CO>2-N>2-H>2O. Он работал по принципу открытого цикла, выбрасывая в атмосферу отработанные азот и углекислый газ. Низкий КПД газодинамического лазера (менее 1 %) являлся серьезным недостатком в тех случаях, когда общее время работы превышало 20–30 с. так как требовался большой запас топлива и рабочего тела. В начале 1968 г. в лабораториях фирм Everett п United Aircraft Corp. были продемонстрированы экспериментальные ГДЛ, создающие в непрерывном режиме излучение мощностью в десятки киловатт. В апреле 1970 г. специалисты лаборатории Avco Everett сообщили о получении на ГДП излучения мощностью 30 кВт в одномодовом режиме и 60 кВт — в многомодовом.

В начале 1970-х гг. в США провели широкие исследования возможностей использования высокоэнергетических лазеров в военных целях для определения областей наиболее эффективного использования лазерного оружия. Выяснилось. что прожечь титановую обшивку толщиной 10 мм с помощью лабораторного макета лазера с выходной мощностью несколько сот киловатт удается менее чем за 1 с. Эффект воздействия лазерного излучения (ЛИ) на "воздушную" цель (с учетом обдува) моделировался воздушной струей со скоростью потока М=1, направленной перпендикулярно распространению лазерного пучка. Было отчетливо видно, что жидкий металл, увлекаемый воздушным потоком, оставлял на поверхности цели кратер овальной формы, однако фактически форма прожигаемого отверстия была круглой. Наиболее трудно разрушаемой частью цели являлась ее металлическая обшивка, а самыми чувствительными к воздействию ЛИ оказались материалы, из которых изготовлены элементы электронно-оптических датчиков. Обычно поверхностного разрушения материала окна достаточно, чтобы вывести из строя датчик.

Порог поражения воздушно-космических целей, таких как самолеты, крылатые ракеты и стенки топливных баков существовавших МНР с ЖРД согласно материалам американской печати. оценивали в 0.5–1.0 Дж/см. Боевую устойчивость МБР с двигателями на твердом топливе посчитали более высокой из-за большей толщины и прочности стенок. Предполагалось, что порог поражения можно повысить до 10–20 кДж/см за счет применения отражающих п абляционных покрытий. Дальнейшее его повышение осложнялось из-за весовых ограничений на данные элементы конструкции. Устойчивость к поражению покрытия головных частей (I'M) МБР была существенно выше, поскольку их рассчитывали на большие тепловые нагрузки при входе в атмосферу. В качестве примера можно отмстить. что разрабатывавшийся для проекта «Галилей» зонд, входящий в атмосферу Юпитера, должен выдерживать нагрузки порядка 100 МДж/см в течение 2-х минут. Поэтому сделали вывод, что уничтожение МБР лазерным оружием наиболее эффективно на активном участке траектории. В расчетах

учитывали, что время прохождения этого участка составляет около 100 с.

В основном эти исследования показали. что в тех областях, где лучевое оружие могло быть практически применено уже в скором времени, по критерию "стоимость-эффективность" обычные виды оружия оказывались его серьезными конкурентами. В частности. это относилось к тактическим средствам ПВО кораблей и сухопутных войск. Там, где использование обычных видов оружия было затруднительным или новее невозможным, для высокоэнергетических лазеров также возникал ряд сложных технических проблем. Это относилось к таким областям, как защита бомбардировщиков, ПРО и ПКО. Министерство обороны (МО) США субсидировало следующие исследования по изучению возможностей применения лучевого оружия:


Перспективный лазерный тактический комплекс армии США (рисунок художника)


— возможность защиты стратегического бомбардировщика, главным образом применительно к В-I. по контракту 1972 г Управления авиационных систем ВВС исследовала фирма «Рокуэлл Интернэшнл». Другую НИР по этой же теме проводила в 1971–1972 гг. фирма «Лулсйан энд Асеотиэйтс» по контракту Ракетного командования США. Не исключено также, что фирма «Боинг» изучала возможность применения лучевого оружии на бомбардировщике В-52 по контракту Ракетного командования от 1973 г.;


Еще от автора Журнал «Техника и вооружение»
Техника и вооружение 2010 01

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2012 12

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.




Техника и вооружение 2010 02

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 1998 05-06

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Рекомендуем почитать
Техника и вооружение 2009 07

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Техника и вооружение 2007 02

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.


Ружейный гранатомет. Ружейная граната

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам.


23-мм карабин специальный КС-23. Наставление

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Техника и вооружение 2003 07

Научно-популярный журнал (согласно титульным данным). Историческое и военно-техническое обозрение.