Для выбора аэродинамической схемы ракеты (что включало в себя определение расположения и размер ее крыльев, рулей и передних плоскостей) специалистами-аэродинамиками ОКБ-2 были разработаны оригинальные методы расчетов. В процессе этого выбора требовалось учитывать потребную маневренность ракеты (диктуемую использованием радиокомандной системы наведения на цель), требования эффективной работы ее системы стабилизации и контура управления, а также достижение минимального аэродинамического сопротивления. В результате, впервые в нашей стране для ЗУР была использована нормальная аэродинамическая схема — рули располагались за крыльями. Одновременно в передней части ракеты были установлены дестабилизаторы, увеличившие маневренность ракеты и позволившие регулировать запас ее статической устойчивости в процессе доводки.
Использование нормальной схемы позволило реализовать более высокое аэродинамическое качество по сравнению со схемой "утка", для этой схемы также не требовалось применять элероны — управление ракетой по крену достигалось дифференциальным отклонением рулей. В свою очередь высокая тяговооруженность и достаточная статическая устойчивость ракеты на стартовом участке позволили реализовать задержку управления по тангажу и рысканью вплоть до отделения стартовика. Однако, во избежание неприемлемого ухода осей бортовых гироприборов на стартовом участке потребовалось обеспечить стабилизацию по крену, для чего расположенная в одной из плоскостей пара консолей стабилизаторов оснащались элеронами.
Особое внимание было уделено внесению "гармонии" в процесс управления ракетой при различных скоростях и высотах ее полета. Проблема поиска средств ее достижения тогда еще только вставала в полный рост и была связана с достижением ракетами высоких сверхзвуковых скоростей полета в достаточно плотных слоях атмосферы. При этом оказывалось, что рули, спроектированные для сверхзвуковой ракеты, недостаточно эффективны для управления ее движением на дозвуковой скорости и, наоборот, рули, эффективные на дозвуке, в сверхзвуковом полете становились чрезмерно эффективными, значительно снижавшими точность управления ракетой.
Решение этой задачи в ОКБ-2 было найдено практически сразу — на ракете был установлен специальный механизм (МИПЧ), автоматически регулировавший угол отклонения рулей в зависимости от скоростного напора воздушного потока. Обоснованием применения этого механизма, а также расчетом его характеристик занимались аэродинамики ОКБ-2 под руководством В.М.Егорова. Первые испытания на стенде макетного образца МИПЧ были проведены в декабре 1954 г., а через два месяца этот механизм был опробован в полете на ракете ШБ-32.
* Подробно о ШБ-32 см. "ТиВ" № 8/2002 г.
Механизм изменения передаточного числа представлял собой достаточно сложную многозвенную конструкцию со сложной кинематикой, требовавшую весьма точной привязки к остальным элементам ракеты. Его использование потребовало установки на ракету приемника воздушного давления, ставшего в дальнейшем причиной неоднократных аварий ракеты.
В целом, ракета В-750 оказалась почти вдвое легче чем ракета комплекса С-25 при практически одинаковой досягаемости по дальности и высоте. Однако при этом В-750 оснащалась менее мощной боевой частью.
Двигатель для маршевой ступени ракеты В-750 разрабатывался с 1954 г. на конкурсной основе ОКБ-2 и ОКБ-3, входившими в НИИ-88. В ОКБ-3 главного конструктора Д.Д. Севрука проектировался однокамерный двигатель С3.20 с турбонасосной системой подачи топлива с максимальной тягой 3100 кг, работавший на двух компонентах топлива. Для начальной раскрутки турбонасосного агрегата (ТНА) использовался пороховой стартер, который при срабатывании также разогревал стенки жидкостного газогенератора, в результате чего поступавший в него окислитель начинал разлагаться и обеспечивать работу ТНА.
В ОКБ-2 главного конструктора А.М. Исаева разрабатывался однокамерный двигатель С2.711 с турбонасосной системой подачи топлива с максимальной тягой 2600 кг. В головке камеры сгорания двигателя были впервые применены центробежные двухкомпонентные форсунки, позволившие получить лучшую, чем в однокомпонентных, полноту сгорания топлива. В отличие от С3.20 для запуска и раскрутки ТНА С2.711 использовался изопропилнитрат (OT- 155, инициирующая жидкость «И»), при разложении которого выделялся горячий газ.
Выбор маршевого двигателя, который предстояло сделать ракетчикам, оказался чрезвычайно сложен и оказался обставлен целым набором скорее политических, чем технических шагов, сделанных участниками этого процесса. Для одного из них, руководителя военной приемки ОКБ-2 Р.Б. Ванникова, ранее работавшего военпредом в КБ С.П. Королева, эти шаги запомнились до мелочей:
"Имея к середине пятидесятых годов более чем десятилетний опыт работы в ракетной технике, я, тем не менее, оказался в ОКБ-2 в положении ученика. Знания о ставших мне привычными баллистических ракетах, конечно, помогали. Но оказалось, что зенитные ракеты значительно превосходили их как по степени сложности выполняемых задач, так и по усложненности конструкции. Они требовали познаний в совершенно "неракетных" науках — аэродинамике, радиотехнике и множества связанных с ними предметов и, конечно же, безупречного владения разнообразными "политическими" инструментами. Один из уроков политического мастерства, который преподал мне в те годы руководитель ОКБ-2 Петр Дмитриевич Грушин, я запомнил на всю жизнь.