Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [21]

Шрифт
Интервал

* * *

Классический результат, приведенный ниже, принадлежит французскому математику Франсуа Виету (1540–1603):



Это произведение, само по себе красивое с точки зрения математики, можно преобразовать в еще более прекрасное выражение, что сделал Хоаким Мунхаммар в 2000 году:




Число пар кроликов F>n в поколении n при отсутствии смертей и при условии, что первая пара кроликов в первом поколении не размножается, подчиняется правилу F>n = F>n-1 + F>n-2>n

F>n называются числами Фибоначчи.

* * *

Вывод формулы Виета на современном языке выглядит следующим образом. Будем использовать треугольник, который применял еще Архимед. Обозначим основание треугольника за Ь, угол, образованный высотой h и стороной треугольника, за ОС.



Имеем

S>nn ∙ площадь треугольника.

Используя элементарную тригонометрию (в развитие которой сам Виет внес заметный вклад), получим:

S>n = (1/2)∙nr>2∙sin 2α = nr>2∙sin α∙cos α.

Следуя по пути Архимеда и используя многоугольник с удвоенным числом сторон, имеем

S>2n = (1/2)∙2∙nr>2∙sin 2α = nr>2∙sin α.

Тогда

S>n/S>2n = cos α

Это ключевой момент рассуждений, поскольку далее с помощью простых алгебраических преобразований выводится следующее выражение:



Заметим, что при переходе к пределу при k —» oo



После еще одного элементарного преобразования имеем



что сводится к исходной формуле. Как оценить начальное значение α? Если, подобно Виету, взять в качестве исходного многоугольника квадрат, где

n = 4, cos α = √(1/2),

и использовать тригонометрическую формулу половинного угла, согласно которой

cos (χ/2) = √[(1/2) + (1/2)∙cos χ]

получим, пусть и другим способом, искомое выражение:



Не будем забывать, что Виету нельзя было отказать в изобретательности. Отдельное место занимают две формулы, которые считаются королевами математической красоты. Они известны как формула Эйлера:

e>π' + 1 = 0

и формула Стирлинга:

n! ~ √(2πn)∙(n/e)''.


ДЗЕТА-ФУНКЦИЯ РИМАНА

Эта легендарная функция, которую обозначают греческой буквой дзета (ζ), возможно, в будущем поможет нам узнать ранее немыслимое о простых числах и откроет их тайны. Благодаря исследованиям Эйлера эту функцию можно выразить в виде ряда, равно как и в виде бесконечного произведения:



Эта функция определяется на области, образованной комплексными числами, для которых вещественная часть больше 1. Она допускает аналитическое продолжение на всю комплексную плоскость без единицы, что показал Георг Фридрих Бернхард Риман (1826–1866). Гипотеза Римана гласит, что «нетривиальные нули» ζ имеют действительную часть, равную >1/>2. Все это выглядит достаточно сложно (и является таковым на самом деле). Столь же непросто обнаружить связь между π и функцией ζ. Эту связь можно заметить, проанализировав значения ζ(s) и выявив, что к соответствует всем целым четным s. Илан Варди и Филипп Флажоле обнаружили следующий любопытный ряд:



Если говорить о цепных дробях, то с их помощью π выражается весьма непросто (первым с помощью бесконечной дроби значение π вычислил Ламберт):



Существуют и другие дроби, не столь известные, но намного более симметричные:



Последняя из формул — это формула лорда Броункера в несколько измененном виде. Цепные дроби отличаются одним положительным свойством: стоит нам остановиться в вычислениях на каком-либо этапе, полученная дробь будет наилучшим из возможных приближенных значений искомого числа. Если при вычислении π с помощью цепной дроби мы остановимся на определенном этапе и «раскрутим» этот клубок в обратную сторону, получим наилучшее из возможных приближенных рациональных значений. Так, если мы остановимся на дроби [3; 7, 15], то получим



ЧТО ТАКОЕ ЦЕПНАЯ ДРОБЬ

Обучить читателя построению цепных дробей, возможно, непросто, но это поможет лучше понять материал, изложенный в книге.

Возьмем число N, которое не является целым. Если мы вычтем из этого числа его целую часть, которую будем называть [N], получим N — [N], то есть дробную часть числа N. Очевидно, что значение этого выражения лежит в интервале от 0 до 1.

Число, обратное N — [N], равно — 1/(N — [N]). Оно больше 1. Для простоты будем называть его N>1.

N — [N] = 1/N>1 или N = [N] + 1/N>1.

Отделив целую часть N>1 и повторив вышеуказанные действия, получим вторую дробь;



И так далее:



Эти действия можно повторять бесконечно. Результатом будет



Если это разложение прекратится, это будет означать, что N — рациональное число (целое или дробное), иными словами, что оно выражается в виде конечной или периодической десятичной дроби. В случае с числом к, которое является иррациональным, разложение в цепную дробь бесконечно. Последовательность, которая обычно записывается так:

[[N]; [N>1], [N>2], [N>3]…]

однозначно определяет N и цепную дробь, в которую раскладывается это число.

* * *

Дробь 333/106 является наилучшим рациональным приближенным значением: чтобы получить любое более точное значение, будет необходимо увеличивать знаменатель. Приближенное значение π = 333/106 в свое время получил Ривар, причем погрешность этого значения крайне мала.

Из так называемой формулы Мэчина

π/4 = 4∙arctg (1/5) — arctg (1/239)

были выведены другие формулы, которые применялись для вычисления знаков π. Позднее мы приведем две подобные формулы, которые использовал японский специалист Канада при расчетах 1241100 000 000 знаков π.


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.