Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [22]
ДЖОН МЭЧИН (ОК. 1680–1751)
Этот английский математик в течение 29 лет занимал пост секретаря Лондонского королевского общества, но остался в истории благодаря единственной формуле, носящей его имя. Эту формулу в сочетании с рядом Тейлора удобно использовать для расчетов числа к, так как полученный ред сходится достаточно быстро. Сегодня известно множество формул подобного вида, например
π/4 = 183∙arctg (1/239) + 32∙arctg (1/1023) — 68∙arctg (1/5832) + 12∙arctg (1/113021) — 100∙arctg (1/6826318) — 12∙arctg (1/33366019650) + 12∙arctg (1/43599522992503626068)
которую вывел Хван Чен Ли в 2003 году.
Индийский математик Рамануджан примерно в 1910 году получил первую из этих формул (и еще 16 подобных ей):
Эта формула отличается удивительным свойством: с вычислением каждого последующего члена она дает 8 новых десятичных знаков π. Однако для доказательства этой формулы пришлось подождать три четверти столетия, так как Рамануджан не потрудился привести доказательство. Билл Госпер, один из первых хакеров в истории, использовал эту формулу для расчета 17 миллионов знаков π. Вариант
позволил находить не 8, а 14 знаков на каждом шаге вычислений. Помимо этого, вычисления стало возможным разделить между несколькими компьютерами.
Приведенная формула была получена братьями Чудновскими в 1987 году. Мы приводим ее, чтобы подчеркнуть, насколько быстро развивается все, связанное с информатикой: в XXI веке эту формулу используют для расчетов на персональных компьютерах, а не суперкомпьютерах.
Эти формулы могут показаться сложными, что не помешало им появиться в фильме «Классный мюзикл» (High School Musical): в одной из сцен они написаны на доске, причем одна формула содержит ошибку, которую исправляют прямо по ходу действия. В чувстве юмора сценаристам не откажешь.
В 1946 году с появлением ENIAC (сокр. от Electronic Numerical Integrator and Computer — электронный числовой интегратор и вычислитель) в вычислениях начали использоваться компьютеры, и все, в том числе расчет знаков π, изменилось навсегда. ENIAC был первым электронным компьютером, предназначенным исключительно для вычислений. Его ближайшим предком была ЭВМ «Колосс», использованная Аланом Тьюрингом (1912–1954) в Блетчли-парке в военных целях, а именно для расшифровки секретных сообщений немцев. ENIAC разработали Джон Пресперт Экерт (1919–1995) и Джон Уильям Мокли (1907–1980). Этот компьютер обладал колоссальными размерами и потреблял неимоверное количество электроэнергии: в нем насчитывалось почти 100000 резисторов, реле, диодов, вакуумных ламп, конденсаторов и т. д. Его вес превышал 27 тонн, а длина составляла свыше 30 метров. ENIAC выделял столько тепла, что помещение прогревалось почти до 50 °C. Этот гигант совершал 5000 операций сложения в секунду — в тысячу раз больше, чем его предшественники (ив несколько тысяч раз меньше, чем современные персональные компьютеры). Кроме этого, он мог хранить в памяти 200 цифр. ENIAC программировался с помощью множества штекеров, подобно старинным телефонным станциям. Он был столь огромен потому, что в то время не существовало ни транзисторов, ни микросхем. В нем также не использовалась современная архитектура фон Неймана, в соответствии с которой данные и программы хранятся в одной и той же памяти.
СРИНИВАСА РАМАНУДЖАН (1887–1920)
Этот индийский математик — один из удивительнейших талантов, известных человечеству. Он был родом из очень бедной семьи. После прочтения краткого конспекта лекций по математике, где не приводились доказательства, юноша почувствовал тягу к знаниям. Он написал нескольким известным европейским математикам и отправил им результаты своего труда (120 теорем), но получил единственный ответ — от англичанина Готфрида Харолда Харди (1877–1947). Харди вместе со своим другом Джоном Литлвудом (1885–1977) за одну ночь прочитал присланную ему рукопись и не поверил своим глазам. Как объяснял сам Харди, формулы Рамануджана «должны быть истинными, поскольку если бы они не были истинными, то ни у кого не хватило бы воображения, чтобы изобрести их». Некоторые из них были похожи на те, что получили Харди и Литлвуд, прочие были в равной степени странны и оригинальны. Позднее, сначала за счет самого Харди, а затем за счет Кембриджского университета Рамануджан переехал в Великобританию, где и работал до самой смерти, наступившей в раннем возрасте от туберкулеза. Ввиду оригинальности его работ его вклад в математику беспорядочен и слабо поддается оценке, поскольку Рамануджан часто не приводил подробный вывод своих формул.
Он был очень религиозным человеком и вегетарианцем. Его в точности описывает наиболее известный анекдот о нем. Как-то Рамануджан попал в больницу и Харди отправился навестить его. Харди заметил, что приехал в такси с номером 1729. Он назвал это число скучным и непримечательным. «Вовсе нет, — последовал ответ. — Это наименьшее натуральное число, представимое в виде суммы кубов двумя различными способами!». Действительно, 1729 = 9>3 + 10>3 = 1>3 + 12>3, и 1729 является наименьшим возможным числом, которое обладает подобным свойством. Этот случай не был бы чем-то из ряда вон выходящим, если бы Харди не потребовалось несколько недель на доказательство этого утверждения. На тщательное же изучение этой темы у него ушло почти 35 лет. Сегодня математики продолжают изучать подобные числа, так называемые номера такси.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.