Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [23]

Шрифт
Интервал

* * *

Вычисление первых 2037 знаков π на компьютере ENIAC заняло 70 часов. В таблице ниже указано рассчитанное количество знаков π и год, чтобы дать представление о том, какие изменения вызвало появление компьютеров:

1947 Д. Фергюсон и Джон Ренч с использованием механического калькулятора ∙ 808

1949 Джон Ренч-младший и Леви Смит с помощью ENIAC ∙ 2037

1958Франсуа Женюи ∙ 10 000

1961Дэниел Шенке и Джон Ренч ∙ 100 265

1973 Жан Гийу и Мартин Буйе ∙ 1001 250

1983 Ясумаса Канада и Ясунори Уширо ∙ 10 013 395

1987Ясумаса Канада, Йошияки Тамура и Йошинобу Кубо ∙ 134 214 700

1989 Григорий и Давид Чудновские ∙ 1011196 691

2002 Ясумаса Канада с группой из девяти специалистов ∙ 1241100 000 000

2009ДайсукеТакахаши и группа программистов ∙ 2576 980 370 000

2011Сигеру Хондо ∙ 10 000 000 000 050

В 1973 году старинная формула Эйлера вкупе с формулой Мэчина позволила Гийу и Буйе вычислить миллион знаков π:



Любопытно, что для вычисления второго слагаемого достаточно вычислить первое и перенести запятую на несколько позиций. Вне зависимости от их абсолютной величины два первых слагаемых будут отличаться только количеством нулей.

В 1976 году Юджин Саламин и Ричард Брент предложили алгоритм, основанный на давней гипотезе Гаусса и Лежандра о последовательном вычислении средних арифметических и средних геометрических. Суть алгоритма непросто описать вкратце. Алгебраический алгоритм — это метод расчета некой величины, в данном случае Я. Саламин и Брент использовали следующие исходные равенства:

a>0 = 1; b>0 = 1/√2; t>0 = 1/4; p>0 = 1,

затем рекуррентным способом вычислили

a>n+1 = (a>n + b>n)/2;

b>n+1 = √(a>nb>n);

t>n+1 = t>np>n(a>n - a>n + 1)>2;

p>n+1 = 2p>n.

В пределе справедливо следующее соотношение:

π ~ (a>n + b>n)>2/4t>n.

Этот алгоритм, который было бы невозможно использовать без помощи компьютера, обладает квадратичной скоростью сходимости, то есть на каждом шаге число знаков, полученное на предыдущем, удваивается. С использованием этого алгоритма было получено 206158430000 знаков π.

Но и это еще не все: в 1980-е годы Петер и Джонатан Борвейны создали алгоритм со скоростью сходимости четвертой степени, с помощью которого было рассчитано 1241100 000 000 знаков. Мы не станем приводить его здесь, так как он будет понятен лишь узким специалистам.


ВЕЛИКОЛЕПНАЯ ЧЕТВЕРКА

Любой специалист, интересующийся вычислением я, знаком с выдающейся канадской семьей Борвейнов. Отец, Давид Борвейн (род. в 1924 году), литовец по происхождению, — известнейший математик своей страны. Он изучал многие разделы математики, особое внимание уделяя теории рядов. Его старший сын Джонатан (род. в 1951 году), автор множества книг, известных в компьютерном мире, отличается особым отношением к числу я. Он увлекается преподаванием математики и разрабатывает специальные обучающие программы. Питер (род. в 1953 году) — один из создателей формул ВВР для расчета числа я, названных так в честь их создателей — Бэйли, Борвейна и Плуффа. Он также достиг выдающихся результатов в информатике. Мать Джонатана и Питера, супруга Давида Борвейна, тоже известна в научных кругах, но не математических, а анатомических.

* * *

В конце 2002 года группа японских специалистов, возглавляемая Ясумасой Канадой, достигла результата, который теперь уже не так удивляет научный мир. Тем не менее последняя страница в этой истории еще не написана. Прогресс в этой области, кажется, не прекращается: в 2011 году был получен 10 000 000 000 050 знак числа π.

Сколь далек этот результат от предсказания Дэниела Шенкса (не путать с Уильямом Шенксом), который в 1983 году заявил, что вычисление миллиарда знаков π станет неприступной задачей! Сохраним для истории две формулы Мэчина, которые использовал Канада:

π/4 = 12∙arctg (1/49) + 32∙arctg (1/57) — 5∙arctg (1/239) + 12∙arctg (1/110443)'

π/4 = 44∙arctg (1/57) + 7∙arctg (1/239) — 12∙arctg (682) + 24∙arctg (1/12943).

Первая формула была открыта в 1982 году, а вторая была найдена Фредериком Карлом Штермером еще в 1896 году (опубликована в журнале Французского математического общества). Кто бы мог подумать, что эта формула будет использована для подобной задачи спустя столько лет! В математике никогда нельзя загадывать наперед: то, что сегодня кажется несущественным, завтра может стать основополагающим.

Возможно, помимо рекордных вычислений читателя заинтересуют не совсем традиционные вычислительные методы. Применение формулы



позволяет вычислить любой n-й знак π без необходимости рассчитывать все предыдущие. Увы, но результатом является только двоичное или шестнадцатеричное число. Формулы, подобные этой, создали Дэвид Бэйли, Питер Борвейн и Симон Плуфф. Они известны как формулы ВВР (по первым буквам фамилий их создателей). Считается, что эти формулы указывают на наступление новой эпохи в вычислениях.

Формула Фабриса Беллара (род. в 1972 году)



является производной от формул ВВР, и с ее помощью вычисления выполняются на 43 % быстрее.

При расчетах в двоичной системе находятся значения битов (0 или 1). Уже вычислен квадриллион знаков числа π. Используя эту формулу, мы можем определить, находится ли на определенной позиции 0 (возможны лишь два варианта: 0 или 1), не зная при этом предшествующих знаков. Совершенству нет предела, хотя реальная полезность подобной формулы представляется сомнительной.


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.