Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [18]
Из элементарной геометрии очевидно, что если верно неравенство
y =< (1/2)∙sin x,
то игла пересечет линию. Это будет отправной точкой наших расчетов. На следующем рисунке изображен график функции y = (1/2)∙sin x:
ЖОРЖ ЛУИ ЛЕКЛЕРК ГРАФ ДЕ БЮФФОН (1707–1788)
Этот французский ученый оставил свой след в различных науках. Он был биологом, писателем, занимался космологией и математикой. Его главным трудом является монументальная «Естественная история» в 36 томах с 8 приложениями. В области космологии наиболее значительным вкладом Бюффона стала гипотеза о возрасте Земли, вычисленном по результатам исследований охлаждения железа. Гипотеза вызвала серьезный протест со стороны церкви. Он перевел на французский труды Ньютона и внес вклад в теорию вероятностей, опубликовав работу «Опыт моральной арифметики», в которой, помимо прочего, содержалась знаменитая задача о падении иглы на лист с нанесенными параллельными линиями.
Граф де Вюффон занимался многими науками, но известен прете всего как натуралист.
* * *
Чтобы оценить площадь закрашенной области, множество точек которой является решением неравенства y =< (1/2)∙sin x, необходимо вычислить интеграл
Площадь прямоугольника равна π/2, и вероятность того, что игла упадет на линию, равна отношению двух площадей:
1/(π/2) = 2/π ~ 0,6366197…
Именно здесь и появляется число π.
Задачу можно также решить для случая, когда l не равно d. При l < d вероятность равна 2l/πd, при l > d вероятность равна
В этом случае необходимо вычислить двойной интеграл. Предпринимались попытки вычислить значение π на основании данных рассуждений, но результаты оказались неудовлетворительными. Фактически малейшая неровность иглы приводит к появлению заметных ошибок, поэтому использовать этот метод не рекомендуется. Предпочтительнее бросать виртуальные иглы на разлинованные листы в киберпространстве. Для этого разработаны специальные программы.
Более сложный вариант предыдущей задачи называется задачей Бюффона-Лапласа. Ее решение приводит Лаплас в своей «Аналитической теории вероятностей». В этом варианте задачи игла падает не на равноудаленные друг от друга параллельные прямые, а на сетку из клеток с перпендикулярными сторонами. Каждая клетка имеет стороны а и b (а не равно Ь). Предполагается, что иголка короче, чем обе стороны.
Чтобы найти ответ, необходимо вычислить несколько более сложный интеграл, чем в предыдущей задаче. Вероятность того, что игла пересечет одну из сторон клетки, равна
(2l(a + b) — l>2)/πab.
При а = b вероятность того, что игла не пересечет ни одну из линий, равна
1 — (l(4a — l)/πa>2)
Вероятность пересечения одной линии равна
2l(2a — l)/πa>2
и вероятность пересечения двух линий равна
l>2/πa>2
Можно обобщить эту задачу, преобразовав квадратные клетки, скажем, в треугольники. Но эту задачу мы оставляем специалистам.
ПЬЕР СИМОН МАРКИЗ ДЕ ЛАПЛАС (1749–1827)
Французский астроном и математик, друг и протеже Наполеона, автор «Небесной механики» в пяти томах и других фундаментальных работ в области физики и универсальных знаний. Лаплас, который уже в юном возрасте продемонстрировал блестящие способности, с удивительной легкостью усваивал математический анализ и физику. Он внес вклад в развитие множества новых концепций в теории вероятностей (производящая функция последовательности, условная вероятность, задача Бюффона), в чистой математике (теория потенциала, преобразование Лапласа, гармонический анализ) и астрономии (форма Земли, образование Солнечной системы из туманности, теория возмущений). Его можно считать практически универсальным гением. Его научные достижения были столь удивительны для современников, что после смерти Лапласа его мозг извлекли для изучения, но ничего особенного в нем обнаружено не было. Наполеон сделал его министром, что не помешало Лапласу принять благородный титул после реставрации Бурбонов. Как гласит знаменитый исторический анекдот, Наполеон ознакомился с сочинением Лапласа об астрономии и удивился полному отсутствию слова «Бог» в его труде. «Это потому, что я в этой гипотезе не нуждался», — ответил ученый.
Во многих задачах, связанных с теорией вероятностей и статистикой, например, в распределении роста, коэффициента интеллекта, инструментальных ошибок телескопа, интенсивности лазерного луча (и это лишь некоторые примеры), фигурирует так называемая кривая Гаусса, или нормальная кривая. Она соответствует распределению вероятностей с кривой плотности, в которой определяющую роль играет π.
Стандартное представление кривой можно получить, взяв среднее значение, равное нулю, и дисперсию δ>2 = 1. В этом случае кривая будет иметь знакомую нам форму колокола, который слегка вытянут вдоль вертикальной оси.
Эта кривая описывается уравнением
Вероятность рассчитывается с помощью интеграла
Как можно убедиться, в этой формуле всегда присутствует π.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.