Секреты числа Пи. Почему неразрешима задача о квадратуре круга - [17]

Шрифт
Интервал



Томас Гоббс (слева) и Джон Валлис вели длинный спор, в котором оскорбления и клевета были в порядке вещей. Причиной ссоры была задача о квадратуре круга.


ДЖОН ВАЛЛИС (1616–1703)

Знаменитый знак бесконечности 

был введен именно этим блестящим английским математиком. Будучи членом Лондонского королевского общества, Валлис занимался расшифровкой сообщений и в первую очередь модной темой той эпохи — вычислением бесконечно малых, в которое он внес новые интересные концепции. Наиболее примечательное его творение принадлежит к теории рядов. Это красивая и полезная формула:



Валлис великолепно производил вычисления в уме. Возможно, причиной этому было то, что он страдал от бессонницы. Также он занимался грамматикой и, что еще более незаурядно, вложил немало сил в обучение глухонемых.

* * *

Бельгийскому иезуиту Грегуару де Сен-Венсану (1584–1667) мы обязаны, помимо прочего, созданием полярных координат, открытием новой системы, близкой к понятию интеграла, и точным расчетом площади под гиперболой. Он также утверждал, что решил задачу о квадратуре круга. Его современники восприняли это с изрядным скептицизмом, и в конце концов Гюйгенс нашел неизбежную ошибку в его рассуждениях. Он упомянут в этой книге за выдающиеся труды и в связи с тем, что ему принадлежит множество корректных и интересных математических доказательств.

Классический пример квадратуры круга представил производитель мыла Якоб Марцелис (1636 — ок. 1714), который утверждал, что



Огастес де Морган в своем сборнике математических ужасов A budget of paradoxes («Запас парадоксов») не слишком благосклонно заметил: «Как и следовало ожидать, в мыловарении он добился больших успехов, чем в вычислении знаков π».

Со временем нелепостей становилось все больше: в 1728 году некий Малтулон заявил, что разгадал тайну вечного движения и квадратуры круга одновременно. Кроме этого, он предложил вознаграждение тому, кто смог бы опровергнуть хотя бы один шаг доказательства, что свидетельствовало о недюжинной уверенности в себе. Итог оказался предсказуем: было показано, что его доказательство ошибочно, и Малтулону не оставалось другого выбора, кроме как выплатить обещанное. Неудивительно, что в 1753 году Французская академия наук постановила не рассматривать присылаемые решения задачи о квадратуре круга. Возможно, академиков испугало все большее число присылаемых решений и связанные с этим неизбежные издержки. Быть может, они решили таким способом избавиться от определенных личностей, подобных некоему Восенвиллю, который потребовал от Академии премию, полагавшуюся первому, кто решит эту задачу.

Даже после выхода доказательства Линдемана поток энтузиастов не иссякал, однако благодаря этому доказательству стала точно известна заведомая ошибочность всех подобных решений. Особо следует выделить тех, кто, подобно Сриниваса Рамануджану (1887–1920), знал, что задача не имеет решения, и находил приближенные построения с удивительной точностью. Так, с помощью одного из построений Рамануджана можно получить значение



Построение квадратуры круга (приближенное) за авторством Рамануджана. Погрешность составила лишь 0,0000000010072!

Глава 3

Число π и теория вероятностей

В основе теории вероятностей — только здравый смысл, сведенный до исчисления.

Пьер Симон маркиз де Лаплас


Может показаться, что теория вероятностей никак не связана с π. Тем не менее это далеко от истины. Скажем для начала, что 0,6079271018… = 6/π>2 — это вероятность того, что два произвольно выбранных числа окажутся взаимно простыми. Это доказал Р. Шартр в 1904 году. Кроме этого, π>2/6 = ζ (2), что устанавливает любопытную связь между π и загадочной функцией Римана ζ. Это также идет в копилку взаимосвязи между π и теорией вероятностей, хотя в теории вероятностей π — явный незваный гость. Наконец, это указывает на определенную корреляцию между π и простыми числами.

Огастес де Морган как-то объяснял страховому агенту математическую задачу о расчете вероятности того, что все члены определенной группы людей будут живы по прошествии некоторого времени. Из теории вероятностей следовало, что в итоговом значении будет фигурировать π. Страховой агент, убежденный, что де Морган ошибся, указал ему на это. Как может случиться, что число π применимо к продаже страховок? Откуда оно взялось? Тем не менее де Морган был прав: связь между ожидаемой продолжительностью жизни, страховыми полисами и числом π действительно существует, и называется она «нормальное распределение».

В этой главе мы покажем подобные таинственные соотношения. История начинается с вторжения благородного французского графа де Бюффона в мир математики. Бюффон решил изучить поведение иглы, которая падает на плоскость, не прокалывая ее, с математической точки зрения.


Иголка в стоге сена…

На листе бумаги нарисовано несколько параллельных прямых, расстояние между которыми одинаково. На лист произвольным образом бросают иголку. Когда игла пересечет одну из линий?



В простейшем случае длина иглы l равна расстоянию d между линиями. Обозначим за у расстояние между центром иглы (ее предполагаемым центром тяжести) и одной из линий сетки. Примем


Еще от автора Хоакин Наварро
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.