Сборник задач по математике с решениями для поступающих в вузы - [14]

Шрифт
Интервал

относительно буквы x, то подразумеваем, что для фиксированных аb и с (эти буквы являются параметрами уравнения) нужно отыскать значения x, обращающие (1) в истинное числовое равенство.

Другими словами, предполагают, что для букв аb и с выбраны определенные, хотя и произвольные, значения, в то время как буква x, которой обозначено неизвестное, остается «свободной». Вместо нее можно подставлять различные числа, в результате чего возникнут либо истинные, либо ложные числовые равенства. Равенство (1) выполняет роль «формы» (или «схемы») уравнений, которая превращается в уравнение, как только мы остановим свой выбор на конкретных значениях параметров. Если выбор значений параметров уже сделан, то полученное уравнение можно рассматривать как «форму» числовых равенств — ложных или истинных.

Часто представляют себе уравнение как равенство двух функций (в частности, как равенство функции нулю), а не как форму. Такое представление недостаточно точно, так как может привести к потере корней.

Например, уравнение

x>2x = 1       (2)

имеет корни x>1 = 1 и x>2 = −1, в то время как функция x>2x определена только при положительных x.

Если же уравнение (2) мы рассматриваем как форму, порождающую числовые равенства, то при x = −1 слева получим выражение (−1)>−2, которое имеет смысл и равно 1.

Итак, уравнением относительно неизвестного x называется форма числовых равенств, которая превращается в истинное или ложное числовое равенство при подстановке вместо буквы x какого-нибудь числа, взятого из рассматриваемой области чисел. Приведем еще несколько определений.

Пусть x, у, z, ... — неизвестные в уравнении

f(x, у, z, ...) = 0.       (3)

Набор значений неизвестных[3]

называется решением уравнения (3), если

f(а, b, с, ...) = 0         (3′)

является истинным числовым равенством.

Решение уравнения с одним неизвестным называют также корнем этого уравнения.

Корнем уравнения 3x² + 2x − 1 = 0 является число x = −1, решением уравнения 2у² − 3 + x² = 0 является система чисел

Решить уравнение — значит, найти все его решения или доказать, что оно не имеет решений.

Два уравнения называются равносильными, если они имеют одно и то же множество решений. Другими словами, любое решение первого уравнения является также решением второго уравнения и, обратно, любое решение второго уравнения является также решением первого уравнения.

Вообще говоря, понятие равносильности тесно связано с определенной областью чисел. Так, уравнения x − 1 = 0 и (x − 1)(x² − 3) = 0 равносильны в области целых чисел и неравносильны в области действительных чисел.

Говорят, что второе уравнение является следствием первого, если каждый корень первого уравнения является корнем второго уравнения.

В процессе решения уравнение можно заменить любым равносильным ему уравнением. Легко убедиться в том, что замена входящего в уравнение математического выражения тождественным[4] приводит к равносильному уравнению.

Во многих случаях удобно заменить данное уравнение его следствием. В результате такой замены могут появиться посторонние корни, т. е. такие числа, которые являются корнями следствия, но не удовлетворяют исходному уравнению. Чтобы отсеять посторонние корни, следует сделать проверку всех найденных значений неизвестного.

Замена входящего в уравнение выражения неабсолютно тождественным может нарушить равносильность. В результате у уравнения могут появиться посторонние корни, а некоторые корни могут быть потеряны.

Например, применение неабсолютного тождества[5]

log x + log у = log xy

приводит к следствию, в то время как применение этого же тождества справа налево

log xy = log x + log у

может повлечь за собой потерю решений. В первом случае в результате замены log x + log у на log xy мы можем приобрести решения, лежащие в области x < 0, у < 0. Во втором случае решения из той же самой области могут быть потеряны.

При решении большинства уравнений угроза приобретения посторонних корней не должна нас пугать, так как в наших руках есть такое надежное средство, как проверка. Гораздо более опасной является перспектива потери корней.

Избежать потери корней можно, если вместо неабсолютных тождеств, сужающих область определения, пользоваться неабсолютными тождествами, расширяющими область определения уравнения.

Вернемся к рассмотренному только что примеру с суммой логарифмов. Когда при решении уравнения приходится потенцировать, то неабсолютное тождество

log x + log у = log

не приводит к потере корней. Если же по ходу преобразований возникла необходимость прологарифмировать произведение, то нужно воспользоваться другим неабсолютным тождеством

log = log |x| + log |у|,

применение которого может лишь расширить область определения уравнения.

Есть второй прием, позволяющий избежать потери решений, который мы поясним на примере уравнения: sin 2x + 7 cos 2x + 7 = 0. Воспользуемся формулами, позволяющими выразить sin 2x и cos 2x через tg x. Получим

Приведя к общему знаменателю и отбросив знаменатель, который всегда отличен от нуля, получим простое уравнение

tg x = −7,

откуда x = −arctg 7 + πk, где k — любое целое число.

Хотя все произведенные преобразования кажутся «законными», мы легко убедимся в том, что целая серия корней


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.