Сборник задач по математике с решениями для поступающих в вузы [заметки]

Шрифт
Интервал

1

Эту задачу нужно решать с особым вниманием.

2

Ответы к упражнениям 1—22 см. на с. 326—328.

3

Для краткости равенства можно располагать в строку или писать (x, y, z, ...) = (а, b, с, ...).

4

Имеется в виду применение абсолютного тождества, см. с. 42. Для неабсолютных тождеств это утверждение неверно.

5

Под применением тождества мы понимаем замену его левой части на правую.

6

Два совпадающих решения считаются за одно.

7

Ответы к упражнениям 1—9 см. на с. 360.

8

Если какая-то точка уже была отмечена светлым кружком, то изменять обозначение не следует.

9

Так в источнике (прим. от верстальщика fb2).

10

Требуется найти не только положительные значения x.

11

 Требуется найти не только положительные значения x.

12

1 карат = 0,2 г.

13

Плотности всех растворов предполагаются одинаковыми; при сливании двух растворов объем нового раствора равен сумме объемов исходных растворов.

14

Первое соотношение — неабсолютное тождество, остальные — абсолютные тождества.

15

Так в тексте. От верстальщика fb2.

16

[x] — целая часть числа x.

17

Такое преобразование системы, вообще говоря, может привести к приобретению постороннего решения, в котором y = 0.

20

Хотя метод интервалов был изложен во введении применительно к многочленам, им можно пользоваться при решении более широкого класса неравенств. В частности, для этого неравенства получаем

(3>√x − 2)(x + 1)(x>3/>2) >0.

Первый множитель обращается в нуль при 

 причем он больше нуля при
 и меньше нуля при
 Нанесем точки −1,
 и >3/>2 на числовую ось и воспользуемся тем обстоятельством, что при x > >3/>2 все три скобки положительны. Так как, кроме того, x ≥ 0, окончательно получим

21

Заметим, что если бы мы перешли к основанию 2, то получили бы уравнение, равносильное данному. Убедитесь в этом самостоятельно.

22

Формулы для 

 и т. п. доказываются аналогично с помощью тождеств: (x + 1)³ = x³ + 3x² + 3x + 1, (x + 1)>4 = x>4 + 4x³ + 6x² + 4x + 1.

23

Во всех случаях удобно граничную точку относить к обоим интервалам, чтобы не столкнуться с ситуацией, когда наименьшее значение не достигается.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.