Сборник задач по математике с решениями для поступающих в вузы - [12]
Глава 7
Алгебраические преобразования
Следующие ниже замечания относятся не только к этой главе, они имеют более общий характер.
Множества точек x числовой оси, удовлетворяющих неравенствам
1) а < x < b;
2) а ≤ x ≤ b;
3) а ≤ x < b;
4) а < x ≤ b;
5) x > а;
6) x < а;
7) x ≥ а;
8) x ≤ а,
где а < b, называются интервалами и обозначаются соответственно (а, b); [а, b]; [а, b), (а, b]; (а, +∞); (−∞, а); [а, +∞); (−∞, а].
Интервалы 1), 5) и 6) называются открытыми; интервал 2) называется замкнутым; интервалы 3), 4), 7) и 8) называются полуоткрытыми. Иногда вместо терминов: открытый интервал, замкнутый интервал, полуоткрытый интервал используют соответственно термины: промежуток (или интервал), отрезок (или сегмент), полуотрезок.
По определению
Для арифметического корня имеет место формула
√а² = |а|.
Иногда приходится пользоваться формулами куба суммы и разности чисел в виде
(а + b)³ = а³ + b³ + 3аb(а + b);
(а − b)³ = а³ − b³ − 3аb(а − b).
Следующая формула называется формулой сложного радикала:
(все подкоренные выражения должны быть неотрицательными).
По определению
где а ≥ 0, m, n — натуральные числа и корень арифметический.
Из этого определения следует, что степени с отрицательным основанием и дробным показателем считаются не имеющими смысла. Например,
не имеет смысла, в то время как .По определению
По определению
α>0 = 1 при а ≠ 0.
Чтобы избежать недоразумений, удобно договориться, что знак корня используется либо для обозначения арифметического корня из неотрицательного числа, либо отрицательного корня нечетной степени из отрицательного числа.
Таким образом,
.Для арифметических корней и корней нечетной степени из отрицательных чисел справедливо правило умножения и деления корней:
Правило, в силу которого показатель корня и показатель подкоренного выражения можно умножить на одно и то же натуральное число, справедливо для арифметических корней и не справедливо для корней нечетной степени из отрицательных чисел.
Замечание. В качестве показателя корня используются только натуральные числа. Иногда встречаются задачи, где показатели — достаточно сложные алгебраические выражения. Во избежание путаницы лучше знак корня в таких задачах не использовать, а прибегать к дробным показателям степени.
7.1. Упростите выражение
7.2. Упростите выражение
7.3. Упростите выражение
После упрощения выражения определите его знак в зависимости от x.
7.4. Упростите выражение
7.5. Упростите выражение
где
.7.6. Вычислите значения выражения
7.7. Преобразуйте выражение
так, чтобы оно не содержало сложных радикалов.
7.8. Разложите на линейные относительно x, у, z, u множители выражение
(xy + zu)(x² − y² + z² − u²) + (xz + yu)(x² + у² − z² − u²).
7.9. Докажите, что
7.10. Докажите, что если а + b + с = 0, то
7.11. Докажите, что при всех действительных значениях x и у имеет место равенство
7.12. Докажите, что
для любых действительных x и у, имеющих одинаковые знаки.
7.13. Докажите, что из условия
следует
(а + b + с)³ = 27аbс.
7.14. Квадратный трехчлен 24х² + 48x + 26 есть разность кубов двух линейных функций с положительными коэффициентами. Найдите эти функции.
Глава 8
Делимость многочленов.
Теорема Безу. Целые уравнения
Многочлен S(x) называется частным, а многочлен R(x) — остатком от деления многочлена P(x) на многочлен Q(x), если равенство
P(x) = Q(x) · S(x) + R(x)
является тождеством и степень многочлена R(x) меньше степени многочлена Q(x).
Обобщенная теорема Виета. Для корней х>1, х>2, ..., х>n уравнения
а>0х>n + a>1x>n − 1 + ... + а>n> − 1x + а>n = 0
имеют место формулы:
>,>,.Для уравнения a>0x>n + a>1x>n − 1 + ... + а>n = 0 с целыми коэффициентами а>0, а>1, ... , а>n верна теорема: если уравнение имеет рациональный корень >p/>q , то p числитель является делителем свободного члена а>n, а знаменатель q — делителем коэффициента а>0.
В частности, если а>0 = 1, то уравнение может иметь только такие целые корни, которые являются делителями свободного члена а>n.
8.1. Решите уравнение
(x − 4,5)>4 + (x − 5,5)>4 = 1.
8.2. Решите уравнение
(4x + 1)(12x − 1)(3x + 2)(x + 1) = 4.
8.3. Докажите, что уравнение
x² − 3у² = 17
не имеет решений в целых числах.
8.4. Найдите все целые решения уравнения
x² − 6xу + 13у² = 100.
8.5. Найдите остаток от деления многочлена x>99 + x³ + 10x + 5 на многочлен x² + 1.
8.6. Найдите все целочисленные решения уравнения
2x²у² + у² − 6x² − 12 = 0.
8.7. В уравнении
x>4 + аx³ + bx² + 6x + 2 = 0
один из корней равен √3 + 1. Найдите остальные корни уравнения, если а и b — рациональные числа.
8.8. При каких значениях а оба корня уравнения
x² − (а + 1)x + а + 4 = 0
отрицательны?
8.9. Найдите соотношение между а, b и с, если корни уравнения
x³ + аx² + bx + с = 0
образуют геометрическую прогрессию.
8.10. Известно, что уравнение x³ + px + q = 0 имеет корни α>1, α>2, α>3. Выразите сумму α>1² + α>2² + α>3² через p и q.
8.11. При каких а и α трехчлен х³ + ax + 1 делится на двучлен x − α без остатка и частное от деления при всех x больше нуля?
8.12. Остатки от деления многочлена относительно x на x − 2 и x − 3 равны соответственно 5 и 7. Найдите остаток от деления этого многочлена на (x − 2)(
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.