Сборник задач по математике с решениями для поступающих в вузы - [12]

Шрифт
Интервал

= 11, сумма которых x + y принимает наименьшее значение.

Глава 7

Алгебраические преобразования

Следующие ниже замечания относятся не только к этой главе, они имеют более общий характер.

Множества точек x числовой оси, удовлетворяющих неравенствам

1) а < x < b;

2) а ≤ x ≤ b;

3) а ≤ x < b;

4) а < x ≤ b;

5) x > а;

6) x < а;

7) x ≥ а;

8) x ≤ а,

где а < b, называются интервалами и обозначаются соответственно (а, b); [а, b]; [а, b), (а, b]; (а, +∞); (−∞, а); [а, +∞); (−∞, а].

Интервалы 1), 5) и 6) называются открытыми; интервал 2) называется замкнутым; интервалы 3), 4), 7) и 8) называются полуоткрытыми. Иногда вместо терминов: открытый интервал, замкнутый интервал, полуоткрытый интервал используют соответственно термины: промежуток (или интервал), отрезок (или сегмент), полуотрезок.

По определению

Для арифметического корня имеет место формула

а² = |а|.

Иногда приходится пользоваться формулами куба суммы и разности чисел в виде

(а + b)³ = а³ + b³ + 3аb(а + b);

(а − b)³ = а³ − b³ − 3аb(а − b).

Следующая формула называется формулой сложного радикала:

(все подкоренные выражения должны быть неотрицательными).

По определению

где а ≥ 0, m, n — натуральные числа и корень арифметический.

Из этого определения следует, что степени с отрицательным основанием и дробным показателем считаются не имеющими смысла. Например,

 не имеет смысла, в то время как
.

По определению


По определению

α>0 = 1 при а ≠ 0.

Чтобы избежать недоразумений, удобно договориться, что знак корня используется либо для обозначения арифметического корня из неотрицательного числа, либо отрицательного корня нечетной степени из отрицательного числа.

Таким образом,

.

Для арифметических корней и корней нечетной степени из отрицательных чисел справедливо правило умножения и деления корней:

Правило, в силу которого показатель корня и показатель подкоренного выражения можно умножить на одно и то же натуральное число, справедливо для арифметических корней и не справедливо для корней нечетной степени из отрицательных чисел.

Замечание. В качестве показателя корня используются только натуральные числа. Иногда встречаются задачи, где показатели — достаточно сложные алгебраические выражения. Во избежание путаницы лучше знак корня в таких задачах не использовать, а прибегать к дробным показателям степени.


7.1. Упростите выражение

7.2. Упростите выражение

7.3. Упростите выражение

После упрощения выражения определите его знак в зависимости от x.

7.4. Упростите выражение

7.5. Упростите выражение

где

.

7.6. Вычислите значения выражения

7.7. Преобразуйте выражение

так, чтобы оно не содержало сложных радикалов.

7.8. Разложите на линейные относительно x, у, zu множители выражение

(xy + zu)( − y² + z² − u²) + (xz + yu)( + у² − z² − u²).

7.9. Докажите, что

7.10. Докажите, что если а + b + с = 0, то

7.11. Докажите, что при всех действительных значениях x и у имеет место равенство

7.12. Докажите, что

для любых действительных x и у, имеющих одинаковые знаки.

7.13. Докажите, что из условия

следует

(а + b + с)³ = 27аbс.

7.14. Квадратный трехчлен 24х² + 48x + 26 есть разность кубов двух линейных функций с положительными коэффициентами. Найдите эти функции.

Глава 8

Делимость многочленов.

Теорема Безу. Целые уравнения

Многочлен S(x) называется частным, а многочлен R(x) — остатком от деления многочлена P(x) на многочлен Q(x), если равенство

P(x) = Q(x) · S(x) + R(x)

является тождеством и степень многочлена R(x) меньше степени многочлена Q(x).

Обобщенная теорема Виета. Для корней х>1, х>2, ..., х>n уравнения

а>0х>n + a>1x>n − 1 + ... + а>n> − 1x + а>n = 0

имеют место формулы:

>,

>,

.

Для уравнения a>0x>n + a>1x>n − 1 + ... + а>n = 0 с целыми коэффициентами а>0, а>1, ... , а>n верна теорема: если уравнение имеет рациональный корень >p/>q , то p числитель является делителем свободного члена а>n, а знаменатель qделителем коэффициента а>0.

В частности, если а>0 = 1, то уравнение может иметь только такие целые корни, которые являются делителями свободного члена а>n.


8.1. Решите уравнение

(x − 4,5)>4 + (x − 5,5)>4 = 1.

8.2. Решите уравнение

(4x + 1)(12x − 1)(3x + 2)(x + 1) = 4.

8.3. Докажите, что уравнение

x² − 3у² = 17

не имеет решений в целых числах.

8.4. Найдите все целые решения уравнения

x² − 6 + 13у² = 100.

8.5. Найдите остаток от деления многочлена x>99 + x³ + 10x + 5 на многочлен x² + 1.

8.6. Найдите все целочисленные решения уравнения

2x²у² + у² − 6x² − 12 = 0.

8.7. В уравнении

x>4 + аx³ + bx² + 6x + 2 = 0

один из корней равен √3 + 1. Найдите остальные корни уравнения, если а и b — рациональные числа.

8.8. При каких значениях а оба корня уравнения

x² − (а + 1)x + а + 4 = 0

отрицательны?

8.9. Найдите соотношение между а, b и с, если корни уравнения

x³ + аx² + bx + с = 0

образуют геометрическую прогрессию.

8.10. Известно, что уравнение x³ + px + q = 0 имеет корни α>1, α>2, α>3. Выразите сумму α>1² + α>2² + α>3² через p и q.

8.11. При каких а и α трехчлен х³ + ax + 1 делится на двучлен x − α без остатка и частное от деления при всех x больше нуля?

8.12. Остатки от деления многочлена относительно x на x − 2 и x − 3 равны соответственно 5 и 7. Найдите остаток от деления этого многочлена на (x − 2)(


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.