Сборник задач по математике с решениями для поступающих в вузы - [13]

Шрифт
Интервал

 − 3).

8.13. Найдите все действительные значения p и q, при которых х>4 + 1 делится на + рх + q.

8.14. Докажите, что многочлен

>n + 1 − (2n + 1)х>n + 1 + (2n + 1)х>n − 1,

где n — натуральное число, делится на (x − 1)³.

8.15. Определите p и q так, чтобы многочлен

6х>4 − 7х³ + рх² + 3х + 2

делился без остатка на  − x + q.

Глава 9

Алгебраические уравнения и системы

Равенства. Тождества. Два математических выражения, соединенных знаком =, образуют равенство.

Примеры равенств:

а² + b² = с², 3 = 3, 3 = 5,

sin² x + cos² x = 1, , sin x = 3.

Числовое равенство может быть истинным (верным) или ложным (неверным). Равенство 3 = 3 истинное, равенство 3 = 5 ложное.

Буквенное равенство при различных значениях входящих в него букв также принимает одно из двух значений: «истина» или «ложь». Например, равенство а² + b² = с² при а = 3, b = 4, с = 5 истинно, а при а = 3, b = 4, с = 6 ложно. Равенство sin² x + cos² x = 1 истинно при всех действительных значениях x, а равенство sin x = 3 всегда ложно.

Если какая-либо часть равенства (или обе части одновременно) перестает существовать, то равенство становится ложным. Равенство

 ложно при
, где k — любое целое число, так как для четных k не существует ctg x, а для нечетных k не существует tg x. Равенство
ложно при x = −1, так как его левая часть теряет смысл при этом значении x (обратите внимание, что правая часть существует всегда). Обе части равенства sin x = 3 всегда имеют смысл, однако это равенство всегда ложно.

Для любого математического выражения можно указать множество систем (наборов) значений входящих в него букв, при которых это выражение существует, т. е. принимает некоторое числовое значение. Такое множество мы будем называть областью определения (областью существования) рассматриваемого математического выражения.

Для выражения

 областью определения является числовая ось с «выколотой» точкой x = −1.

Для выражения logx найти область определения уже несколько сложнее. Во-первых, из числа x извлекается квадратный корень. Эта операция возможна, если x ≥ 0. Чтобы затем можно было найти логарифм от √x, необходимо √x > 0. Оба условия выполняются при x > 0. В основании логарифма может стоять лишь положительное число, отличное от единицы. Таким образом, получаем область определения: x > 0, у > 0, у ≠ 1.

Два математических выражения называются тождественными, если

1) их области определения совпадают;

2) они принимают одинаковые числовые значения при подстановке в каждое выражение одного и того же набора значений входящих в него букв, произвольно выбранного из области определения.

Равенство, в котором правая и левая части являются тождественными выражениями, называется тождеством.

Для обозначения тождественного равенства иногда используется символ ≡.

Примеры тождеств: (а − b)² = а² − 2аb + b², sin² x + cos² x = 1,

Первые два тождества общеизвестны. Последнее равенство тоже является тождеством. В самом деле, область определения левой части не содержит ни одной точки, область определения правой части тоже не содержит ни одной точки. Поскольку области определения правой и левой частей — пустые множества, то требования 1) и 2) в определении тождества удовлетворяются. Равенство

, как мы видели, истинно при всех x, кроме x = −1. Оно не является тождеством, так как требование 1) не удовлетворено. Однако нарушение происходит только в одной точке.

Введем понятие неабсолютного тождества.

Пусть в нашем распоряжении есть два математических выражения, имеющих разные области определения. Обозначим через U их общую часть. Если на множестве U значения обоих математических выражений совпадают, то говорят, что они неабсолютно тождественны, а соответствующее равенство называют неабсолютным тождеством.

Характерным примером неабсолютного тождества является соотношение

lg ху = lg x + lg у.

Область определения правой части: x > 0, у > 0, т. е. все точки плоскости, лежащие внутри I квадранта. Область определения левой части: x > 0, у > 0; x < 0, у < 0; это уже будут внутренние точки I и III квадрантов. Общая часть областей определения: x > 0, у > 0. На этой общей части приведенное соотношение превращается в истинное равенство.

Напомним определение тождества, которым обычно пользуются в средней школе.

Тождеством называется равенство, справедливое при всех значениях входящих в него букв, при которых обе его части имеют смысл.

Нетрудно заметить, что это определение объединяет понятия тождества и неабсолютного тождества в одно. Чтобы подчеркнуть, что мы пользуемся другим определением тождества, будем иногда вместо термина тождество употреблять термин абсолютное тождество.

Упражнения[2]

Какие из следующих равенств являются абсолютными тождествами, а какие — неабсолютными? Приведите доказательство сделанного вами вывода.

1. sin² x + cos² x = 1,

2. tg x = >sin x/>cos x

3. tg x = >1/>ctg x

4. sec x = >1/>cos x

5. sec x cos x = 1,

6. sec x − >1/>cos x = 0,

7.

8.

9.

10.

11.

12.

13.

14. lg xy = lg |x| + lg |y|,

15. lg x² = 2 lg x,

16. lg x² = 2 lg |x|.


Уравнение, корни уравнения, равносильность. Когда мы говорим, что равенство

аx² + bx + с = 0     (1)

является


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.