Сборник задач по математике с решениями для поступающих в вузы - [15]
Хотя все произведенные преобразования кажутся «законными», мы легко убедимся в том, что целая серия корней x = >π/>2 + kπ потеряна. Достаточно подставить эти значения неизвестного в исходное уравнение.
Корни были потеряны в результате применения неабсолютных тождеств
левые части которых существуют всегда, а правые теряют смысл
именно при x = >π/>2 + kπ.
Если по каким-то причинам мы не могли избежать применения неабсолютных тождеств, грозящих потерей корней, то нам не остается ничего иного, как проверить те значения неизвестного, которые оказались исключенными из области определения входящих в уравнение выражений. В нашем примере, как и в большинстве тригонометрических уравнений, это нетрудно сделать.
Наконец, отметим такой важный момент при решении уравнений, как правильное использование условий.
Уравнение
lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) − 2
удобнее всего решать, преобразовав lg (1 − x²) в сумму логарифмов. Чтобы оградить себя от возможной потери корней, мы должны написать
lg (1 − x²) = lg |1 + x| + lg |1 − x|.
Однако подобная осторожность в этом примере является излишней. Поскольку в уравнение наряду с выражением lg (1 − x²) входят lg (1 + x) и lg (1 − x), то 1 + x и 1 − x должны быть положительными, чтобы левая часть уравнения имела смысл. Поэтому вместо lg |1 + x| и lg |1 − x| можно написать lg (1 + x) и lg (1 − x). Таким образом, данное уравнение принимает вид
lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) − 2.
Приведя подобные члены, получим
2 lg (1 − x) = −2,
откуда x = 0,9 — единственный корень данного уравнения.
На этом примере мы видим, что правильное использование условия позволяет быстрее достичь цели, чем в случае чисто формальных преобразований.
Однако достаточно ли обоснованным было приведенное выше решение? Чтобы убедиться в этом, решите самостоятельно такое уравнение
lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) + 2.
Оно отличается от предыдущего лишь знаком последнего члена. Поэтому, повторив все приведенные только что рассуждения, получим
2 lg (1 − x)= 2,
откуда x = −9. Подставив это значение x в исходное уравнение, убеждаемся в том, что нами найден посторонний корень. Произошло это потому, что уравнения
lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) + 2
и
2 lg (1 − x) = 2
неравносильны. Равносильность нарушилась в результате уничтожения в правой и левой частях уравнения члена lg (1 + x), который существенно ограничивал область определения уравнения. Таким образом, проверка здесь является необходимой частью решения.
Разобранный пример нередко предлагают решать так. Найдем область определения уравнения:
Теперь будем применять к уравнению те преобразования, которые не могут привести к потере корней:
lg (1 + x) + lg (1 − x)³ = lg (1 − x²) + lg 100,
lg [(1 + x)(1 − x)³] = lg 100(1 − x²),
(1 + x)(1 − x)³ = 100(1 − x²).
Решая последнее уравнение, найдем х>1 = 1, х>2 = −1, х>3 = −9, х>4 = 11. Так как все четыре числа не попали в интервал −1 < x < 1, то исходное уравнение не имеет корней.
Для данного уравнения такой метод решения оказывается верным, так как позволяет отбросить все найденные значения x. Однако основан он на ошибочном убеждении, что в процессе преобразований могут быть приобретены лишь те посторонние корни, которые не попадают в область определения исходного уравнения.
Приведем два примера.
Вначале рассмотрим уравнение
arcsin x = >π/>3 + arcsin >x/>2.
Его область определения — отрезок −1 ≤ x ≤ 1. Возьмем синусы от правой и левой частей уравнения, в результате чего получим следствие
sin (arcsin x) = sin (>π/>3 + arcsin >x/>2), т. е.
Решая последнее уравнение, получим х>1 = −1, х>2 = 1. Оба значения x принадлежат области определения исходного уравнения, однако х>2 = −1 — посторонний корень, в чем легко убедиться проверкой.
Решим теперь в области действительных чисел уравнение
Областью определения этого уравнения является вся числовая ось. Возведем данное уравнение в куб:
В последнее уравнение входит выражение
являющееся левой частью данного уравнения. Заменяем его правой частью этого уравнения. ПолучимВозведя в куб, получим
(x + 1)(3x + 1)(x − 1) = −(x + 1)³,
откуда x>1 = −1, x>2 = 0.
Проверка убеждает нас в том, что корень x>2 = 0 является посторонним. Он появился в результате замены левой части данного уравнения на не равную ей тождественно правую часть.
Приведенные примеры свидетельствуют о том, что нахождение области определения уравнения (или, как иногда говорят, области допустимых значений — ОДЗ) не гарантирует нас от появления посторонних корней, т. е. не избавляет от необходимости делать проверку полученных в результате решения корней.
Это не означает, что находить область определения всегда бессмысленно. Можно привести много примеров, когда знание области определения существенно упрощает решение.
Что же касается проверки, то она оказывается излишней только в тех случаях, когда исследована эквивалентность применявшихся в процессе решения преобразований.
Для этого необходимо выяснить, при каких преобразованиях мы получаем следствие данного уравнения, а в каких случаях нам грозит потеря корней.
Посмотрим на примере, как исследуется равносильность двух уравнений. Имеет место следующая теорема.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.