Сборник задач по математике с решениями для поступающих в вузы - [17]

Шрифт
Интервал

имеет хотя бы одно решение для любого значения b (а, b, x, у — действительные числа).

9.33. Найдите все значения а и b, при которых система уравнений

имеет единственное решение (x, у, а, b — действительные числа, x > 0).

9.34. Решите систему

в области действительных чисел.

9.35. Решите уравнение

|6 − |x − 3| − |x + 1|| − аx − 5а = 4

при всех действительных значениях параметра а.

9.36. При всех действительных а решите уравнение

9.37. Решите уравнение

9.38. Решите систему уравнений

Глава 10

Алгебраические неравенства 

О доказательстве неравенств. Доказать неравенство можно следующими способами, которые мы продемонстрируем на примере неравенства

1. От противного. Предположим противное:

Тогда

что невозможно.

2. По определению неравенства. Составим разность левой и правой частей и определим ее знак:

3. Вывести из ранее доказанного или очевидного неравенства. Мы знаем, что

откуда

Обратите внимание, что следующее «доказательство» неравенства является логически некорректным.

Если

 и, следовательно,

что очевидно.

Некорректность приведенных рассуждений состоит в том, что в качестве исходного пункта взято доказываемое неравенство. Таким образом установлено, что если

то (√а − √b)² ≥ 0. Однако верное следствие может быть получено из ложной посылки. Если те же рассуждения провести в обратном порядке, то мы получим корректное доказательство, аналогичное тому, которое приведено выше под номером 3).

Решение неравенств. Система, совокупность. Решить неравенство — значит, найти все системы значений входящих в него неизвестных, при которых неравенство истинно, или доказать, что таких систем значений нет.

Если два или несколько неравенств должны удовлетворяться одновременно, то говорят, что они образуют систему.

Если достаточно, чтобы удовлетворялось одно из двух или нескольких неравенств, то говорят, что эти неравенства образуют совокупность.

Неравенства, образующие систему, записывают одно под другим, а сбоку ставят фигурную скобку — знак системы.

Например,

Решение этой системы показано на рис. 10.1 двойной штриховкой. Эта же система неравенств может быть записана так: 3 < x < 7.

Совокупность неравенств записывают либо в строку, либо в столбец и ставят слева квадратную скобку. Это позволяет не путать совокупность неравенств с системой. Запись

означает, что число x должно лежать на любом из заштрихованных на рис. 10.2 интервалов.

Решить систему, состоящую из нескольких совокупностей неравенств, — значит, найти все значения неизвестного, удовлетворяющие всем входящим в систему совокупностям.


Пример 1. Решить систему совокупностей неравенств

Решение первой совокупности изображено на рис. 10.3 с помощью двух прямоугольников (левая сторона одного из них бесконечно отодвинута влево), расположенных над точками, удовлетворяющими этой совокупности. Аналогично на этом же рисунке изображены решения второй и третьей совокупностей.

Чтобы избежать путаницы, мы для разных совокупностей строим прямоугольники различной высоты. Особо внимательно нужно следить за концами интервалов: если неравенство строгое, то будем рисовать в конце интервала светлый кружок, а если нестрогое, то — черный кружок. Специально разберите случаи, когда одна и та же точка оказывается и светлой, и темной — для системы и совокупности неравенств.

Точки числовой оси, над которыми расположены три прямоугольника разной высоты (см. рис. 10.3), дают решение системы: 1,5 < x ≤ 2.

Упражнения[7]

1. Что произойдет с совокупностью неравенств, если к ней добавить неравенство, не имеющее решений?

2. Что произойдет с системой неравенств, если к ней добавить неравенство, не имеющее решений?

3. Решите систему двух совокупностей неравенств

Метод интервалов. Рассмотрим неравенства типа

(1)

Начнем предварительно с неравенства (x − 2)(x − 3) > 0. Его нередко решают следующим образом. Произведение двух множителей положительно тогда и только тогда, когда оба множителя одного знака, т. е. данное неравенство равносильно совокупности двух систем

Чтобы убедиться в нерациональности такого способа решения, достаточно применить его к решению неравенства, левая часть которого содержит, например, десять множителей

(x − 1)(x − 2)...(x − 10) > 0.         (2)

Несложный подсчет показывает, что в этом случае пришлось бы рассматривать совокупность, состоящую из 512 систем по 10 неравенств в каждой системе.

Решим неравенство (2) с помощью более рационального приема, называемого методом интервалов. Отметим на числовой оси все корни многочлена, стоящего в левой части неравенства (рис. 10.4). Когда x расположен правее самого большого корня (x > 10), многочлен будет положительным, так как каждый множитель положителен. Если двигаться по оси в отрицательном направлении, то при переходе через точку x = 10 множитель x − 10 поменяет знак. В произведении появится один отрицательный множитель, а девять останутся положительными, в результате чего многочлен поменяет знак, так как появится дополнительный отрицательный множитель. Далее перемена знака произведения произойдет при переходе через каждую из обозначенных на рис. 10.4 точек. (Области, где многочлен положителен, отмечены на рис. 10.4 дугой сверху, а области, где он отрицателен, — дугой снизу.) Теперь легко записать решение неравенства (2):


Рекомендуем почитать
Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Снова кубик Рубика

Из журнала "Юный техник" №2, 1983 г.


Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.